Dimension reduction in nonparametric kernel discriminant analysis

被引:9
|
作者
Hernández, A
Velilla, S
机构
[1] Univ Exeter, Dept Math Sci, Exeter EX4 4QE, Devon, England
[2] Univ Carlos III Madrid, Dept Estadist, E-28903 Getafe, Spain
关键词
class separation; curse of dimensionality; dimension-reduction subspaces; Kernel discriminant rule; projection pursuit; sliced average variance estimation (SAVE); sliced inverse regression (SIR);
D O I
10.1198/106186005X79610
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article develops a dimension-reduction method in kernel discriminant analysis, based on a general concept of separation of populations. The ideas we present lead to a characterization of the central subspace that does not impose restrictions on the marginal distribution of the feature vector. We also give a new procedure for estimating relevant directions in the central subspace. Comparisons to other procedures are studied and examples of application are discussed.
引用
收藏
页码:847 / 866
页数:20
相关论文
共 50 条
  • [1] Kernel Entropy Discriminant Analysis for Dimension Reduction
    Mehta, Aditya
    Sekhar, C. Chandra
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2017, 2017, 10597 : 35 - 42
  • [2] AN INTRODUCTION TO DIMENSION REDUCTION IN NONPARAMETRIC KERNEL REGRESSION
    Girard, S.
    Saracco, J.
    STATISTICS FOR ASTROPHYSICS: METHODS AND APPLICATIONS OF THE REGRESSION, 2015, 66 : 167 - +
  • [3] Multiple Kernel-Based Discriminant Analysis via Support Vectors for Dimension Reduction
    Zeng, Shan
    Gao, Chongjun
    Wang, Xiuying
    Jiang, Liang
    Feng, Dagan
    IEEE ACCESS, 2019, 7 : 35418 - 35430
  • [4] Nonparametric sparse discriminant analysis for dimensionality reduction
    Sun, H.
    Du, C.
    Zou, H. X.
    Ji, K. F.
    ELECTRONICS LETTERS, 2013, 49 (03) : 187 - 188
  • [5] Dimension reduction and visualization in discriminant analysis (with discussion)
    Cook, RD
    Yin, XR
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2001, 43 (02) : 147 - 177
  • [6] Dimension reduction and visualization in discriminant analysis - Discussion
    Sheather, SJ
    McKean, JW
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2001, 43 (02) : 185 - 190
  • [7] Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures
    Li, Quanbao
    Wei, Fajie
    Zhou, Shenghan
    OPEN PHYSICS, 2017, 15 (01): : 270 - 279
  • [8] Dimensionality reduction based on sparse representation and nonparametric discriminant analysis
    Sun, J. (sjx75461@hotmail.com), 1600, National University of Defense Technology (35):
  • [9] Stochastic discriminant analysis for linear supervised dimension reduction
    Juuti, Mika
    Corona, Francesco
    Karhunen, Juha
    NEUROCOMPUTING, 2018, 291 : 136 - 150
  • [10] Dimensionality Reduction and Bandwidth Selection for Spatial Kernel Discriminant Analysis
    Boumeddane, Soumia
    Hamdad, Leila
    Haddadou, Hamid
    Dabo-Niang, Sophie
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2021, : 278 - 285