Artinian cofinite modules over complete Noetherian local rings

被引:2
|
作者
Sadeghi, Behrouz [1 ]
Bahmanpour, Kamal [2 ]
A'zami, Jafar [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Marand Branch, Marand, Iran
[2] Univ Mohaghegh Ardabili, Fac Math Sci, Dept Math, Ardebil 5619911367, Iran
关键词
Artinian module; cofinite module; Krull dimension; local cohomology; COHOMOLOGY MODULES; FINITENESS; DIMENSION; IDEALS;
D O I
10.1007/s10587-013-0059-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) be a complete Noetherian local ring, I an ideal of R and M a nonzero Artinian R-module. In this paper it is shown that if p is a prime ideal of R such that dim R/p = 1 and (0:M p) is not finitely generated and for each i a (c) 3/4 2 the R-module Ext (R) (i) (M,R/p) is of finite length, then the R-module Ext (R) (1) (M, R/p) is not of finite length. Using this result, it is shown that for all finitely generated R-modules N with Supp(N) aS dagger V (I) and for all integers i a (c) 3/4 0, the R-modules Ext (R) (i) (N,M) are of finite length, if and only if, for all finitely generated R-modules N with Supp(N) aS dagger V (I) and for all integers i a (c) 3/4 0, the R-modules Ext (R) (i) (M,N) are of finite length.
引用
收藏
页码:877 / 885
页数:9
相关论文
共 50 条