Random projection ensemble learning with multiple empirical kernels

被引:11
|
作者
Wang, Zhe [1 ]
Jie, Wenbo [1 ]
Chen, Songcan [2 ]
Gao, Daqi [1 ]
机构
[1] E China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
关键词
Multiple kernel learning; Empirical mapping; Random projection; Ensemble classifier; Pattern recognition;
D O I
10.1016/j.knosys.2012.08.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose an effective and efficient random projection ensemble classifier with multiple empirical kernels. For the proposed classifier, we first randomly select a subset from the whole training set and use the subset to construct multiple kernel matrices with different kernels. Then through adopting the eigendecomposition of each kernel matrix, we explicitly map each sample into a feature space and apply the transformed sample into our previous multiple kernel learning framework. Finally, we repeat the above random selection for multiple times and develop a voting ensemble classifier, which is named RPEMEKL. The contributions of the proposed RPEMEKL are: (1) efficiently reducing the computational cost for the eigendecomposition of the kernel matrix due to the smaller size of the kernel matrix; (2) effectively increasing the classification performance due to the diversity generated through different random selections of the subsets: (3) giving an alternative multiple kernel learning from the Empirical Kernel Mapping (EKM) viewpoint, which is different from the traditional Implicit Kernel Mapping (IKM) learning. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:388 / 393
页数:6
相关论文
共 50 条
  • [1] An Efficient and Effective Multiple Empirical Kernel Learning Based on Random Projection
    Zhe Wang
    Qi Fan
    Wenbo Jie
    Daqi Gao
    [J]. Neural Processing Letters, 2015, 42 : 715 - 744
  • [2] An Efficient and Effective Multiple Empirical Kernel Learning Based on Random Projection
    Wang, Zhe
    Fan, Qi
    Jie, Wenbo
    Gao, Daqi
    [J]. NEURAL PROCESSING LETTERS, 2015, 42 (03) : 715 - 744
  • [3] Random Projection Ensemble Classifiers
    Schclar, Alon
    Rokach, Lior
    [J]. ENTERPRISE INFORMATION SYSTEMS-BK, 2009, 24 : 309 - +
  • [4] Ensemble learning with supervised kernels
    Torkkola, K
    Tuv, E
    [J]. MACHINE LEARNING: ECML 2005, PROCEEDINGS, 2005, 3720 : 400 - 411
  • [5] Ensemble of optimal trees, random forest and random projection ensemble classification
    Khan, Zardad
    Gul, Asma
    Perperoglou, Aris
    Miftahuddin, Miftahuddin
    Mahmoud, Osama
    Adler, Werner
    Lausen, Berthold
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (01) : 97 - 116
  • [6] Ensemble of optimal trees, random forest and random projection ensemble classification
    Zardad Khan
    Asma Gul
    Aris Perperoglou
    Miftahuddin Miftahuddin
    Osama Mahmoud
    Werner Adler
    Berthold Lausen
    [J]. Advances in Data Analysis and Classification, 2020, 14 : 97 - 116
  • [7] An Ensemble System with Random Projection and Dynamic Ensemble Selection
    Manh Truong Dang
    Anh Vu Luong
    Tuyet-Trinh Vu
    Quoc Viet Hung Nguyen
    Tien Thanh Nguyen
    Stantic, Bela
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I, 2018, 10751 : 576 - 586
  • [8] Random-projection ensemble classification
    Cannings, Timothy I.
    Samworth, Richard J.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (04) : 959 - 1035
  • [9] Supervised learning of local projection kernels
    Gonen, Mehmet
    Alpaydin, Ethem
    [J]. NEUROCOMPUTING, 2010, 73 (10-12) : 1694 - 1703
  • [10] Multiple Empirical Kernel Learning with Majority Projection for imbalanced problems
    Zhu, Zonghai
    Wang, Zhe
    Li, Dongdong
    Du, Wenli
    [J]. Applied Soft Computing Journal, 2019, 76 : 221 - 236