Precompact groups and property (T)

被引:1
|
作者
Ferrer, M. [1 ]
Hernandez, S. [2 ,3 ]
Uspenskij, V. [4 ]
机构
[1] Univ Jaume 1, Inst Matemat Castellon, Castellon de La Plana 12071, Spain
[2] Univ Jaume 1, INIT, Castellon de La Plana 12071, Spain
[3] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
Compact group; Precompact group; Representation; Pontryagin-van Kampen duality; Compact-open topology; Fell dual space; Fell topology; Bohr compactification; Kazhdan property (T); Determined group; TOPOLOGIES;
D O I
10.1016/j.jmaa.2013.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a topological group G, the dual object (G) over cap is defined as the set of equivalence classes of irreducible unitary representations of G equipped with the Fell topology. It is well known that, if G is compact, (G) over cap is discrete. In this paper, we investigate to what extent this remains true for precompact groups, that is, dense subgroups of compact groups. We show that: (a) if G is a metrizable precompact group, then (G) over cap is discrete; (b) if G is a countable non-metrizable precompact group, then (G) over cap is not discrete; (c) every non-metrizable compact group contains a dense subgroup G for which (G) over cap is not discrete. This extends to the non-Abelian case what was known for Abelian groups. We also prove that, if G is a countable Abelian precompact group, then G does not have Kazhdan's property (T), although (G) over cap is discrete if G is metrizable. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 50 条
  • [1] Pontryagin duality in the class of precompact Abelian groups and the Baire property
    Bruguera, M.
    Tkachenko, M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (12) : 2636 - 2647
  • [2] THE PROPERTY (T) FOR ROELCKE-PRECOMPACT POLISH GROUPS [after Ibarlucia, based on work of Ben Yaacov and Tsankov]
    Le Maitre, Francois
    ASTERISQUE, 2021, (430) : 459 - 521
  • [3] Precompact groups and convergence
    Shibakov, Alexander
    TOPOLOGY AND ITS APPLICATIONS, 2020, 271
  • [4] THE BAIRE PROPERTY AND PRECOMPACT DUALITY
    Ferrer, M.
    Hernández, S.
    Sepúlveda, I.
    Trigos-Arrieta, F.J.
    arXiv,
  • [5] PRECOMPACT GROUPS AND ALMOST PERIODICITY
    REICH, A
    MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (03) : 218 - &
  • [7] The dual space of precompact groups
    Ferrer, M.
    Hernandez, S.
    Uspenskij, V.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2013, 54 (02): : 239 - 244
  • [8] On closed subgroups of precompact groups
    Hernandez, Salvador
    Remus, Dieter
    Trigos-Arrieta, F. Javier
    JOURNAL OF GROUP THEORY, 2022, : 571 - 610
  • [9] Reflexivity in precompact groups and extensions
    Galindo, J.
    Tkachenko, M.
    Bruguera, M.
    Hernandez, C.
    TOPOLOGY AND ITS APPLICATIONS, 2014, 163 : 112 - 127
  • [10] Precompact Frechet topologies on Abelian groups
    Hrusak, M.
    Ramos-Garcia, U. A.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (17) : 3605 - 3613