On self-polar Hilbertian norms on (indefinite) inner product spaces

被引:0
|
作者
Hofmann, G
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Considering a non-degenerate (possibly indefinite) inner product space with complete Hilbertian majorant, the self-polar Hilbertian majorants, which are suitable generalizations of the canonical norm on a pre-Hilbert space, are characterized by an operator equation involving the Gram operator. Among the self-polar Hilbertian norms, both the interesting class of pseudo-decomposition norms and the generic decomposition majorant are distinguished and investigated. Furthermore, characterizations and constructions for pseudo-decomposition majorants, decomposition majorants and the generic decomposition majorant are given.
引用
收藏
页码:349 / 374
页数:26
相关论文
共 50 条
  • [2] On Norms in Indefinite Inner Product Spaces
    Langer, Matthias
    Luger, Annemarie
    [J]. RECENT ADVANCES IN OPERATOR THEORY IN HILBERT AND KREIN SPACES, 2010, 198 : 259 - +
  • [3] POLAR DECOMPOSITIONS OF QUATERNION MATRICES IN INDEFINITE INNER PRODUCT SPACES
    Groenewald, Gilbert J.
    Van Rensburg, Dawie B. Janse
    Ran, Andre C. M.
    Theron, Frieda
    Van Straaten, Madelein
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 659 - 670
  • [4] Polar decompositions of normal operators in indefinite inner product spaces
    Mehl, Christian
    Ran, Andre C. M.
    Rodman, Leiba
    [J]. OPERATOR THEORY IN KREIN SPACES AND NONLINEAR EIGENVALUE PROBLEMS, 2006, 162 : 277 - 292
  • [5] SHIFTS ON INDEFINITE INNER PRODUCT SPACES
    MCENNIS, BW
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1979, 81 (01) : 113 - 130
  • [6] SELF-ADJOINT OPERATORS IN INDEFINITE INNER PRODUCT-SPACES
    HANNABUSS, KC
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1988, 39 (155): : 333 - 348
  • [7] Self-dual, not self-polar
    Brouwer, A. E.
    Cameron, Peter J.
    Haemers, W. H.
    Preece, D. A.
    [J]. DISCRETE MATHEMATICS, 2006, 306 (23) : 3051 - 3053
  • [8] Theorems of the alternative over indefinite inner product spaces
    Ramanathan, K.
    Sivakumar, K. C.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (01) : 99 - 104
  • [9] Star partial order in indefinite inner product spaces
    Stanisev, Ivana M.
    [J]. QUAESTIONES MATHEMATICAE, 2022, 45 (02) : 213 - 221
  • [10] Locally definite operators in indefinite inner product spaces
    H. Langer
    A. Markus
    V. Matsaev
    [J]. Mathematische Annalen, 1997, 308 : 405 - 424