Parameter estimation of Hammerstein-Wiener nonlinear system with noise using special test signals

被引:18
|
作者
Li, Feng [1 ]
Jia, Li [1 ]
机构
[1] Shanghai Univ, Coll Mechatron Engn & Automat, Dept Automat, Shanghai Key Lab Power Stn Automat Technol, Shanghai 072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hammerstein-Wiener; Nonlinear system; Error compensation; Special test signals; Process noise; PREDICTIVE CONTROL; IDENTIFICATION; MODEL; ALGORITHM;
D O I
10.1016/j.neucom.2018.02.108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an identification procedure of Hammerstein-Wiener nonlinear system with process noise using special test signals is presented. Special test signals that contain separable signal and uniformly random multi-step signal are employed to separate the identification problems of the linear dynamic part and the output static nonlinear part from that of the input static nonlinear part, and then correlation analysis method is applied to estimate the parameters of the output static nonlinear part and linear dynamic part. Moreover, a filter is embedded to form extended Hammerstein-Wiener system to calculate the noise correlation functions by the information of zeros and poles of the extended system, further an error compensation term which consists of the noise correlation functions is added to least square estimation to compensate the error caused by process noise. Therefore, the unbiased estimation of model parameters can be derived by error compensation based recursive least square method. Simulation results demonstrate that proposed approach can effectively identify parameters of Hammerstein-Wiener nonlinear system in the presence of process noise. (C) 2019 Elsevier B.V. All rights reserve.
引用
收藏
页码:37 / 48
页数:12
相关论文
共 50 条
  • [1] Modeling of Hammerstein-Wiener processes with special input test signals
    Park, HC
    Sung, SW
    Lee, J
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (03) : 1029 - 1038
  • [2] Parameters estimation for the Hammerstein-Wiener models with colored noise based on hybrid signals
    Li, Feng
    Han, Jiahu
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2024, 38 (03) : 921 - 937
  • [3] Parameter Estimation Algorithms for Hammerstein-Wiener Systems With Autoregressive Moving Average Noise
    Wang, Yanjiao
    Ding, Feng
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (03):
  • [4] Input test signal design and parameter estimation method for the Hammerstein-Wiener processes
    Lee, YJ
    Sung, SW
    Park, S
    Park, S
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (23) : 7521 - 7530
  • [5] Estimation of Muscle Force with EMG Signals Using Hammerstein-Wiener Model
    Abbasi-Asl, R.
    Khorsandi, R.
    Farzampour, S.
    Zahedi, E.
    [J]. 5TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2011 (BIOMED 2011), 2011, 35 : 157 - +
  • [6] Nonlinear system identification using fractional Hammerstein-Wiener models
    Hammar, Karima
    Djamah, Tounsia
    Bettayeb, Maamar
    [J]. NONLINEAR DYNAMICS, 2019, 98 (03) : 2327 - 2338
  • [7] Nonlinear System Identification of Hammerstein-Wiener Model Using AWPSO
    Talaie, Sharareh
    Shoorehdeli, Mahdi Aliyari
    Shahmohamadi, Leila
    [J]. 2014 IRANIAN CONFERENCE ON INTELLIGENT SYSTEMS (ICIS), 2014,
  • [8] Recursive parameter identification of Hammerstein-Wiener systems with measurement noise
    Yu, Feng
    Mao, Zhizhong
    Jia, Mingxing
    Yuan, Ping
    [J]. SIGNAL PROCESSING, 2014, 105 : 137 - 147
  • [9] Parameter Estimation of Hammerstein-Wiener ARMAX Systems Using Unscented Kalman Filter
    Mazaheri, A.
    Mansouri, M.
    Shooredeli, M. A.
    [J]. 2014 SECOND RSI/ISM INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2014, : 298 - 303
  • [10] Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm
    Yu, Feng
    Mao, Zhizhong
    Yuan, Ping
    He, Dakuo
    Jia, Mingxing
    [J]. ISA TRANSACTIONS, 2017, 70 : 104 - 115