Mixed boundary value problems for nonlinear elliptic systems with p-structure in polyhedral domains

被引:0
|
作者
Ebmeyer, C [1 ]
机构
[1] Univ Bonn, Math Seminar, D-53115 Bonn, Germany
关键词
p-Laplacian; piecewise smooth boundary; mixed boundary value problem; difference quotient; Nikolskii space;
D O I
10.1002/1522-2616(200203)236:1<91::AID-MANA91>3.3.CO;2-T
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nonlinear elliptic system -Sigma(i=1)(n)partial derivative(i)F(i)(x,delu) = f(x)+Sigma(i=1)(n)partial derivative(i)f(i)(x) is investigated on a non-smooth domain. Mixed boundary value conditions are given. The left-hand side of the system has p-structure (e. g., it is the p-Laplacian and 1 < p < infinity). Global regularity results of u and \delu\(p/2) in fractional order Sobolev spaces are proven.
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条