Bayesian approaches to meta-analysis of ROC curves

被引:17
|
作者
Hellmich, M [1 ]
Abrams, KR [1 ]
Sutton, AJ [1 ]
机构
[1] Univ Leicester, Dept Epidemiol & Publ Hlth, Leicester, Leics, England
关键词
Bayesian methods; random effects; meta-analysis; ROC curve; diagnostic test; hierarchical models; Markov-chain Monte Carlo technique; Gibbs sampling; maximum likelihood; method of moments;
D O I
10.1177/0272989X9901900304
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
A comparative review of important classic and Bayesian approaches to fixed-effects and random-effects meta-analysis of binormal ROC curves and areas underneath them is presented. The ROC analyses results of seven evaluation studies concerning the dexamethasone suppression test provide the basis for a worked example. Particular attention is given to fully Bayesian inference, a novelty in the ROC context, based on Gibbs samples from posterior distributions of hierarchical model parameters and related quantities. Fully Bayesian meta-analysis may properly account for the uncertainty associated with the model parameters, possibly incorporating prior knowledge and beliefs, and allows clinically intuitive predictions of unobserved study effects via calculation of posterior predictive densities. The effects of various different prior specifications (six noninformative as well as one informative) on the posterior estimates re investigated (sensitivity-analysis). Recommendations and suggestions for further research are made. Computer code for the more advanced methods may either be downloaded via the Internet or be found elsewhere.
引用
收藏
页码:252 / 264
页数:13
相关论文
共 50 条
  • [1] Meta-analysis of ROC curves
    Kester, ADM
    Buntinx, F
    MEDICAL DECISION MAKING, 2000, 20 (04) : 430 - 439
  • [2] Bivariate random effects meta-analysis of ROC curves
    Arends, L. R.
    Hamza, T. H.
    van Houwelingen, J. C.
    Heijenbrok-Kal, M. H.
    Hunink, M. G. M.
    Stijnen, T.
    MEDICAL DECISION MAKING, 2008, 28 (05) : 621 - 638
  • [3] Bayesian approaches to fixed effects meta-analysis
    Islas, Clara Dominguez
    Rice, Kenneth M.
    RESEARCH SYNTHESIS METHODS, 2022, 13 (04) : 520 - 532
  • [4] A SIMEX approach for meta-analysis of diagnostic accuracy studies with attention to ROC curves
    Guolo, Annamaria
    Cabrera, Tania Erika Pesantez
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2023, 19 (02): : 455 - 471
  • [5] Meta-analysis of Diagnostic Accuracy and ROC Curves with Covariate Adjusted Semiparametric Mixtures
    Doebler, Philipp
    Holling, Heinz
    PSYCHOMETRIKA, 2015, 80 (04) : 1084 - 1104
  • [6] Meta-analysis of Diagnostic Accuracy and ROC Curves with Covariate Adjusted Semiparametric Mixtures
    Philipp Doebler
    Heinz Holling
    Psychometrika, 2015, 80 : 1084 - 1104
  • [7] A discrete time-to-event model for the meta-analysis of full ROC curves
    Stoye, Ferdinand Valentin
    Tschammler, Claudia
    Kuss, Oliver
    Hoyer, Annika
    RESEARCH SYNTHESIS METHODS, 2024, 15 (06) : 1031 - 1048
  • [8] Comparing traditional and Bayesian approaches to ecological meta-analysis
    Pappalardo, Paula
    Ogle, Kiona
    Hamman, Elizabeth A.
    Bence, James R.
    Hungate, Bruce A.
    Osenberg, Craig W.
    METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (10): : 1286 - 1295
  • [9] Bayesian confidence intervals for ROC curves
    Parker, DR
    Gustafson, SC
    Ross, TD
    ELECTRONICS LETTERS, 2005, 41 (05) : 279 - 280
  • [10] Meta-analysis of full ROC curves with flexible parametric distributions of diagnostic test values
    Hoyer, Annika
    Kuss, Oliver
    RESEARCH SYNTHESIS METHODS, 2020, 11 (02) : 301 - 313