Inferring functional connectivity using spatial modulation measures of fMRI signals within brain regions of interest

被引:0
|
作者
Ng, Bernard [1 ]
Abugharbieh, Rafeef [1 ]
McKeown, Martin J. [2 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5Z 1M9, Canada
[2] Univ British Columbia, Pacific Parkinsons Res Ctr, Dept Med Neurol, Vancouver, BC V5Z 1M9, Canada
关键词
fMRI; functional connectivity; spatial modulation; replicator dynamics; region of interest (ROI);
D O I
10.1109/ISBI.2008.4541060
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose inferring functional connectivity between brain regions by examining the spatial modulation of the blood oxygen level dependent (BOLD) signals within brain regions of interest (ROIs). This is motivated by our previous work, where the spatial distribution of BOLD signals within an ROI was found to be modulated by task. Applying replicator dynamics to our proposed spatial feature time courses on real functional magnetic resonance imaging (fMRI) data detected task-related changes in the composition of the brain's functional networks, whereas using classical mean intensity features resulted in little changes being detected. Thus, our results suggest that intensity is not the only coactivating feature in fMRI data. Instead, spatial modulations may also be used for inferring functional connectivity.
引用
收藏
页码:572 / +
页数:2
相关论文
共 50 条
  • [1] Functional connectivity analysis of fMRI data using parameterized regions-of-interest
    Weeda, Wouter D.
    Waldorp, Lourens J.
    Grasman, Raoul P. P. P.
    van Gaal, Simon
    Huizenga, Hilde M.
    [J]. NEUROIMAGE, 2011, 54 (01) : 410 - 416
  • [2] Inferring brain functional hubs by eigencentrality mapping of phase fMRI connectivity
    Chen, Zikuan
    Shi, Qiao
    Daniel, Ebenezer
    Chen, Bihong T.
    [J]. MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
  • [3] CONNECTIVITY-BASED PARCELLATION OF FUNCTIONAL SUB-REGIONS FROM BRAIN FMRI SIGNALS
    Haq, Nandinee Fariah
    Tan, Sun Nee
    McKeown, Martin J.
    Wang, Z. Jane
    [J]. 2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 933 - 937
  • [4] Inferring Functional Connectivity in fMRI Using Minimum Partial Correlation
    Lei Nie
    Xian Yang
    Paul M.Matthews
    Zhi-Wei Xu
    Yi-Ke Guo
    [J]. Machine Intelligence Research, 2017, 14 (04) : 371 - 385
  • [5] Inferring functional connectivity in fMRI using minimum partial correlation
    Nie L.
    Yang X.
    Matthews P.M.
    Xu Z.-W.
    Guo Y.-K.
    [J]. Guo, Yi-Ke (y.guo@imperial.ac.uk), 1600, Chinese Academy of Sciences (14): : 371 - 385
  • [6] Functional connectivity in major depression with psychomotor symptoms - A regions-of-interest analysis using fMRI
    Wahlund, B
    [J]. INTERNATIONAL PSYCHOGERIATRICS, 2005, 17 : 99 - 99
  • [7] Probabilistic Boolean Network for inferring brain connectivity using fMRI data
    Ma, Zheng
    Wang, Z. Jane
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 457 - +
  • [8] Regions, systems, and the brain:: Hierarchical measures of functional integration in fMRI
    Marrelec, Guillaume
    Bellec, Pierre
    Krainik, Alexandre
    Duffau, Hugues
    Pelegrini-Isaac, Melanie
    Lehericy, Stephane
    Benali, Habib
    Doyon, Julien
    [J]. MEDICAL IMAGE ANALYSIS, 2008, 12 (04) : 484 - 496
  • [9] INFERRING INDIVIDUAL DIFFERENCES IN FMRI: FINDING BRAIN REGIONS WITH SIGNIFICANT WITHIN SUBJECT CORRELATION
    Purkayastha, Sumitra
    Wager, Tor D.
    Nichols, Thomas E.
    [J]. STATISTICA SINICA, 2008, 18 (04) : 1483 - 1500
  • [10] TIME VARYING BRAIN CONNECTIVITY MODELING USING FMRI SIGNALS
    Liu, Aiping
    Chen, Xun
    Wang, Z. Jane
    McKeown, Martin J.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,