Electroencephalogram processing using neural networks

被引:34
|
作者
Robert, C
Gaudy, JF
Limoge, A
机构
[1] Univ Paris 05, Lab Electrophysiol, F-92120 Montrouge, France
[2] Univ Paris 05, Lab Anat Fonct, F-92120 Montrouge, France
关键词
electroencephalogram; neural network; review;
D O I
10.1016/S1388-2457(02)00033-0
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The electroencephalogram (EEG), a highly complex signal. is one of the most common Sources of information used to study brain function and neurological disorders. More than 100 Current neural network applications dedicated to EEG processing are presented. Works are categorized according to their objective (sleep analysis, monitoring anesthesia depth, brain-computer interface, EEG artifact detection, EEG source-based localization, etc.). Each application involves a specific approach (long-term analysis or short-term EEG segment analysis, real-time or time delayed processing, single or multiple EEG-channel analysis, etc.), for which neural networks were generally successful. The promising performances observed are demonstrative of the efficiency and efficacy of systems developed. This review can aid researchers, clinicians and implementors to understand up-to-date interest in neural network tools for EEG processing. The extended bibliography provides a database to assist in possible new concepts and idea development. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:694 / 701
页数:8
相关论文
共 50 条
  • [1] Classification of Electroencephalogram Signals Using Artificial Neural Networks
    Rodrigues, Pedro Miguel
    Teixeira, Joao Paulo
    [J]. 2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 808 - 812
  • [2] THE ELECTROENCEPHALOGRAM AND CORTICAL NEURAL NETWORKS
    WRIGHT, JJ
    KYDD, RR
    [J]. NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1992, 3 (03) : 341 - 362
  • [3] Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram
    Nhan Duy Truong
    Anh Duy Nguyen
    Kuhlmann, Levin
    Bonyadi, Mohammad Reza
    Yang, Jiawei
    Ippolito, Samuel
    Kavehei, Omid
    [J]. NEURAL NETWORKS, 2018, 105 : 104 - 111
  • [4] Electroencephalogram-Based Pain Classification Using Artificial Neural Networks
    Kaur, Manpreet
    Prakash, Neelam Rup
    Kalra, Parveen
    Puri, Goverdhan Dutt
    [J]. IETE JOURNAL OF RESEARCH, 2022, 68 (03) : 2312 - 2325
  • [5] Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks
    Lopes, Fabio
    Leal, Adriana
    Medeiros, Julio
    Pinto, Mauro F.
    Dourado, Antonio
    Duempelmann, Matthias
    Teixeira, Cesar
    [J]. IEEE ACCESS, 2021, 9 : 149955 - 149970
  • [6] Bispectral analysis of electroencephalogram using neural networks to assess the depth of anesthesia
    Lavrov N.G.
    Bulaev V.V.
    Solouhin E.N.
    Taratuhin S.A.
    Chistyakov A.V.
    [J]. Biomedical Engineering, 2016, 49 (06) : 380 - 384
  • [7] Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
    童霈文
    徐晖
    孙毅
    汪泳州
    彭杰
    廖岑
    王伟
    李清江
    [J]. Chinese Physics B, 2023, 32 (07) : 672 - 680
  • [8] Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
    Tong, Peiwen
    Xu, Hui
    Sun, Yi
    Wang, Yongzhou
    Peng, Jie
    Liao, Cen
    Wang, Wei
    Li, Qingjiang
    [J]. CHINESE PHYSICS B, 2023, 32 (07)
  • [9] Investigating the temporal dynamics of electroencephalogram (EEG) microstates using recurrent neural networks
    Sikka, Apoorva
    Jamalabadi, Hamidreza
    Krylova, Marina
    Alizadeh, Sarah
    van der Meer, Johan N.
    Danyeli, Lena
    Deliano, Matthias
    Vicheva, Petya
    Hahn, Tim
    Koenig, Thomas
    Bathula, Deepti R.
    Walter, Martin
    [J]. HUMAN BRAIN MAPPING, 2020, 41 (09) : 2334 - 2346
  • [10] Discriminating Fake and Real Smiles Using Electroencephalogram Signals With Convolutional Neural Networks
    Moussa, Mostafa M.
    Tariq, Usman
    Al-Shargie, Fares
    Al-Nashash, Hasan
    [J]. IEEE ACCESS, 2022, 10 : 81020 - 81030