Machine learning did not beat logistic regression in time series prediction for severe asthma exacerbations

被引:10
|
作者
de Hond, Anne A. H. [1 ,2 ,3 ]
Kant, Ilse M. J. [1 ,2 ,3 ]
Honkoop, Persijn J. [3 ]
Smith, Andrew D. [4 ]
Steyerberg, Ewout W. [2 ,3 ]
Sont, Jacob K. [3 ]
机构
[1] Leiden Univ, Med Ctr, Dept Informat Technol & Digital Innovat, Albinusdreef 2, NL-2300 RC Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Clin AI Implementat & Res Lab, Albinusdreef 2, NL-2300 RC Leiden, Netherlands
[3] Leiden Univ, Med Ctr, Dept Biomed Data Sci, Albinusdreef 2, NL-2300 RC Leiden, Netherlands
[4] Univ Hosp Wishaw, Dept Resp Med, 50 Netherton St, Wishaw ML2 0DP, Scotland
关键词
TRADE-OFF; MODELS; INTERPRETABILITY; PROBABILITY; ACCURACY; CANCER;
D O I
10.1038/s41598-022-24909-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Early detection of severe asthma exacerbations through home monitoring data in patients with stable mild-to-moderate chronic asthma could help to timely adjust medication. We evaluated the potential of machine learning methods compared to a clinical rule and logistic regression to predict severe exacerbations. We used daily home monitoring data from two studies in asthma patients (development: n = 165 and validation: n = 101 patients). Two ML models (XGBoost, one class SVM) and a logistic regression model provided predictions based on peak expiratory flow and asthma symptoms. These models were compared with an asthma action plan rule. Severe exacerbations occurred in 0.2% of all daily measurements in the development (154/92,787 days) and validation cohorts (94/40,185 days). The AUC of the best performing XGBoost was 0.85 (0.82-0.87) and 0.88 (0.86-0.90) for logistic regression in the validation cohort. The XGBoost model provided overly extreme risk estimates, whereas the logistic regression underestimated predicted risks. Sensitivity and specificity were better overall for XGBoost and logistic regression compared to one class SVM and the clinical rule. We conclude that ML models did not beat logistic regression in predicting short-term severe asthma exacerbations based on home monitoring data. Clinical application remains challenging in settings with low event incidence and high false alarm rates with high sensitivity.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Machine learning did not beat logistic regression in time series prediction for severe asthma exacerbations
    Anne A. H. de Hond
    Ilse M. J. Kant
    Persijn J. Honkoop
    Andrew D. Smith
    Ewout W. Steyerberg
    Jacob K. Sont
    Scientific Reports, 12
  • [2] Exploring machine learning for monitoring and predicting severe asthma exacerbations
    Anastasiou, Aggeliki
    Kocsis, Otilia
    Moustakas, Konstantinos
    10TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2018), 2018,
  • [3] Machine learning approaches to personalize early prediction of asthma exacerbations
    Finkelstein, Joseph
    Jeong, In Cheol
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2017, 1387 (01) : 153 - 165
  • [4] Machine learning versus logistic regression for the prediction of complications after pancreatoduodenectomy
    Ingwersen, Erik W.
    Stam, Wessel T.
    Meijs, Bono J. V.
    Roor, Joran
    Besselink, Marc G.
    Koerkamp, Bas Groot
    de Hingh, Ignace H. J. T.
    van Santvoort, Hjalmar C.
    Stommel, Martijn W. J.
    Daams, Freek
    SURGERY, 2023, 174 (03) : 435 - 440
  • [5] Heart Disease Prediction Using Logistic Regression Machine Learning Model
    Hrvat, Faris
    Spahic, Lemana
    Aleta, Amina
    MEDICON 2023 AND CMBEBIH 2023, VOL 1, 2024, 93 : 654 - 662
  • [6] Time Series Prediction Based on Machine Learning
    Jiang, Q. Y.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING (EAME 2015), 2015, 13 : 128 - 129
  • [7] Automated Machine Learning for Time Series Prediction
    da Silva, Felipe Rooke
    Vieira, Alex Borges
    Bernardino, Heder Soares
    Alencar, Victor Aquiles
    Pessamilio, Lucas Ribeiro
    Correa Barbosa, Helio Jose
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [8] Loan Repayment Prediction Using Logistic Regression Ensemble Learning With Machine Learning Algorithms
    Dinh, Thuan Nguyen
    Thanh, Binh Pham
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 79 - 85
  • [9] Machine Learning Prediction of Severe Asthma and COPD Hospital Readmission
    Li, H.
    Lopez, K.
    Lipkin-Moore, Z.
    Kay, S.
    Rajeevan, H.
    Davis, J.
    Wilson, F.
    Rochester, C. L.
    Gomez, J. L.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [10] Use of Machine learning to predict asthma exacerbations
    Janson, Christer
    Johansson, Gunnar
    Larsson, Kjell
    Stallberg, Bjorn
    Mueller, Mario
    Luczko, Mateusz
    Kjoeller, Bine
    Fell, Stuart
    Bacher, Gerald
    Holzhauer, Bjorn
    Goyal, Pankaj
    Lisspers, Karin
    EUROPEAN RESPIRATORY JOURNAL, 2020, 56