Interval estimation for the intraclass correlation in Dirichlet-multinomial data

被引:10
|
作者
Lui, KJ [1 ]
Cumberland, WG
Mayer, JA
Eckhardt, L
机构
[1] San Diego State Univ, Dept Math & Comp Sci, San Diego, CA 92182 USA
[2] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA USA
[3] San Diego State Univ, Grad Sch Publ Hlth, San Diego, CA 92182 USA
关键词
confidence limits; Fieller's theorem; coverage probability; intraclass correlation; and Dirichlet-multinomial;
D O I
10.1007/BF02294301
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When the underlying distribution is discrete with a limited number of categories, methods for interval estimation of the intraclass correlation which assume normality are theoretically inadequate for use. On the basis of large sample theory, this paper develops an asymptotic closed-form interval estimate of the intraclass correlation for the case where there is a natural score associated with each category. This paper employs Monte Carlo simulation to demonstrate that when the underlying intraclass correlation is large, the traditional interval estimator which assumes normality can be misleading. We find that when the number of classes is greater than or equal to 20, the interval estimator proposed here can generally perform reasonably well in a variety of situations. This paper further notes that the proposed interval estimator is invariant with respect to a linear transformation. When the data are on a nominal scale, an extension of the proposed method to account for this case, as well as a discussion on the relationship between the intraclass correlation and a kappa-type measure defined here and on the limitation of the corresponding kappa-type estimator are given.
引用
收藏
页码:355 / 369
页数:15
相关论文
共 50 条
  • [1] Interval estimation for the intraclass correlation in dirichlet-multinomial data
    Kung-Jong Lui
    William G. Cumberland
    Joni A. Mayer
    Laura Eckhardt
    [J]. Psychometrika, 1999, 64 : 355 - 369
  • [2] PSEUDO MAXIMUM-LIKELIHOOD ESTIMATION FOR THE DIRICHLET-MULTINOMIAL DISTRIBUTION
    CHUANG, C
    COX, C
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (10) : 2293 - 2311
  • [3] Variational Bayes estimation of hierarchical Dirichlet-multinomial mixtures for text clustering
    Bilancia, Massimo
    Di Nanni, Michele
    Manca, Fabio
    Pio, Gianvito
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (04) : 2015 - 2051
  • [4] Batch effects correction for microbiome data with Dirichlet-multinomial regression
    Dai, Zhenwei
    Wong, Sunny H.
    Yu, Jun
    Wei, Yingying
    [J]. BIOINFORMATICS, 2019, 35 (05) : 807 - 814
  • [5] Asymptotics of Entropy of the Dirichlet-Multinomial Distribution
    Turowski, Krzysztof
    Jacquet, Philippe
    Szpankowski, Wojciech
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1517 - 1521
  • [6] Variational Bayes estimation of hierarchical Dirichlet-multinomial mixtures for text clustering
    Massimo Bilancia
    Michele Di Nanni
    Fabio Manca
    Gianvito Pio
    [J]. Computational Statistics, 2023, 38 : 2015 - 2051
  • [8] Clustering multivariate count data via Dirichlet-multinomial network fusion
    Zhao, Xin
    Zhang, Jingru
    Lin, Wei
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [9] ChromDMM: a Dirichlet-multinomial mixture model for clustering heterogeneous epigenetic data
    Osmala, Maria
    Eraslan, Gokcen
    Lahdesmaki, Harri
    [J]. BIOINFORMATICS, 2022, 38 (16) : 3863 - 3870
  • [10] Fisher information matrix of the Dirichlet-multinomial distribution
    Paul, SR
    Balasooriya, U
    Banerjee, T
    [J]. BIOMETRICAL JOURNAL, 2005, 47 (02) : 230 - 236