Bias in the estimation of mean reversion in continuous-time Levy processes

被引:3
|
作者
Bao, Yong [1 ]
Ullah, Aman [2 ]
Wang, Yun [3 ]
Yu, Jun [4 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Univ Calif Riverside, Riverside, CA 92521 USA
[3] Univ Int Business & Econ, Beijing 100029, Peoples R China
[4] Singapore Management Univ, Singapore 178902, Singapore
基金
中国国家自然科学基金;
关键词
Bias; Mean reversion parameter; Levy processes;
D O I
10.1016/j.econlet.2015.06.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper develops the approximate bias of the ordinary least squares estimator of the mean reversion parameter in continuous-time Levy processes. Several cases are considered, depending on whether the long-run mean is known or unknown and whether the initial condition is fixed or random. The approximate bias is used to construct a bias corrected estimator. The performance of the approximate bias and the bias corrected estimator is examined using simulated data. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 19
页数:4
相关论文
共 50 条
  • [1] Bias in the estimation of the mean reversion parameter in continuous time models
    Yu, Jun
    [J]. JOURNAL OF ECONOMETRICS, 2012, 169 (01) : 114 - 122
  • [2] Low-frequency estimation of continuous-time moving average Levy processes
    Belomestny, Denis
    Panov, Vladimir
    Woerner, Jeannette H. C.
    [J]. BERNOULLI, 2019, 25 (02) : 902 - 931
  • [3] Spectral GMM estimation of continuous-time processes
    Chacko, G
    Viceira, LM
    [J]. JOURNAL OF ECONOMETRICS, 2003, 116 (1-2) : 259 - 292
  • [4] Bias optimality for multichain continuous-time Markov decision processes
    Guo, Xianping
    Song, XinYuan
    Zhang, Junyu
    [J]. OPERATIONS RESEARCH LETTERS, 2009, 37 (05) : 317 - 321
  • [5] INVARIANCE, MINIMAX SEQUENTIAL ESTIMATION, AND CONTINUOUS-TIME PROCESSES
    KIEFER, J
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (03): : 573 - 601
  • [6] PARAMETER ESTIMATION IN CONTINUOUS-TIME STOCHASTIC PROCESSES.
    Borkar, Vivek
    Bagchi, Arunabha
    [J]. Stochastics, 1982, 8 (03): : 193 - 212
  • [8] Bayesian Estimation for Continuous-Time Sparse Stochastic Processes
    Amini, Arash
    Kamilov, Ulugbek S.
    Bostan, Emrah
    Unser, Michael
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (04) : 907 - 920
  • [9] Semiparametric estimation of structural failure time models in continuous-time processes
    Yang, S.
    Pieper, K.
    Cools, F.
    [J]. BIOMETRIKA, 2020, 107 (01) : 123 - 136
  • [10] Estimation of continuous-time Markov processes sampled at random time intervals
    Duffie, D
    Glynn, P
    [J]. ECONOMETRICA, 2004, 72 (06) : 1773 - 1808