Magnetization reversal studies in structurally tailored cobalt nanowires

被引:12
|
作者
Kaur, Daljit [1 ]
Chaudhary, Sujeet [1 ]
Pandya, Dinesh K. [1 ]
Gupta, Rekha [2 ]
Kotnala, R. K. [2 ]
机构
[1] Indian Inst Technol, Dept Phys, Thin Film Lab, New Delhi 110016, India
[2] Natl Phys Lab, New Delhi 110012, India
关键词
Cobalt nanowire; Magnetization reversal; Curling mode; Magnetic anisotropy; Electrodeposition; Structurally tailored nanowire; FERROMAGNETIC NANOWIRES; ANGULAR-DEPENDENCE; CO NANOWIRES; MAGNETORESISTANCE; NUCLEATION; ANISOTROPY; ARRAYS; WIRES;
D O I
10.1016/j.jmmm.2013.05.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cobalt nanowires (NWs) having hcp crystal structure are structurally tailored for different preferred orientations (PO) of (0002), (10 (1) over bar0), (11 (2) over bar0) and (10 (1) over bar1) by varying bath temperature and bath concentration in commercially available 50 nm pore diameter polycarbonate (PCT) and 20 nm pore diameter anodic alumina (AAO) membranes. The magnetization studies show orientation dependent competition of magneto-crystalline anisotropy with shape anisotropy. The large effective anisotropy, K-eff (along longitudinal direction) of 1.42 x 10(6) erg/cc is observed in (0002) PO NWs, which changes sign (-1.50 x 10(6) erg/cc) in (10 (1) over bar0) PO NWs. The angular dependence of coercivity [H-C(theta)] in (0002) oriented Co NWs exhibits a non-monotonic behavior in both the 50 nm and 20 nm samples. The fitting of H-C(theta) data reveals that the magnetization reversal mechanism initially takes place by curling and subsequently changes to coherent rotation mode after a certain transition angle, which is higher in case of denser NW array. This increase in transition angle can be attributed to the increased magneto-static interactions in the AAO membrane array having 10(3) times higher NW areal-density than that in PCT membrane array. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 78
页数:7
相关论文
共 50 条
  • [1] Fabrication of Structurally Tailored Cobalt Nanowires
    Debburman, Pramit K.
    Kaur, Daljit
    Pandya, Dinesh K.
    [J]. NANOTECHNOLOGY 2011: ELECTRONICS, DEVICES, FABRICATION, MEMS, FLUIDICS AND COMPUTATIONAL, NSTI-NANOTECH 2011, VOL 2, 2011, : 123 - 125
  • [2] Magnetization reversal in cobalt and nickel electrodeposited nanowires
    Ounadjela, K
    Ferre, R
    Louail, L
    George, JM
    Maurice, JL
    Piraux, L
    Dubois, S
    [J]. JOURNAL OF APPLIED PHYSICS, 1997, 81 (08) : 5455 - 5457
  • [3] A theory of magnetization reversal in nanowires
    Maier, RS
    [J]. NOISE IN COMPLEX SYSTEMS AND STOCHASTIC DYNAMICS II, 2004, 5471 : 48 - 57
  • [4] Magnetization reversal in granular nanowires
    Forster, H
    Schrefl, T
    Dittrich, R
    Suess, D
    Scholz, W
    Tsiantos, V
    Fidler, J
    Nielsch, K
    Hofmeister, H
    Kronmüller, H
    Fischer, S
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) : 2580 - 2582
  • [5] Incoherent magnetization reversal in nanowires
    Skomski, R
    Zeng, H
    Sellmyer, DJ
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 249 (1-2) : 175 - 180
  • [6] Magnetization reversal in cobalt nanowires with combined magneto-crystalline and shape anisotropies
    Li, Hongjian
    Wu, Qiong
    Yue, Ming
    Peng, Yi
    Li, Yuqing
    Liang, Jingming
    Wang, Dajun
    Zhang, Jiuxing
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 481 : 104 - 110
  • [7] Magnetization Reversal in a Cobalt Nanoparticle
    Klughertz, G.
    Hervieux, P. -A.
    Manfredi, G.
    [J]. ULTRAFAST MAGNETISM I, 2015, 159 : 62 - +
  • [8] Magnetization reversal in nanowires with a spiral shape
    Westphalen, A.
    Remhof, A.
    Zabel, H.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 104 (01)
  • [9] Scenarios of Magnetization Reversal of Thin Nanowires
    Ivanov, A. A.
    Orlov, V. A.
    [J]. PHYSICS OF THE SOLID STATE, 2015, 57 (11) : 2204 - 2212
  • [10] Magnetization reversal dynamics in nickel nanowires
    Hertel, R
    Kirschner, J
    [J]. PHYSICA B-CONDENSED MATTER, 2004, 343 (1-4) : 206 - 210