A Non-Gaussian Spatial Generalized Linear Latent Variable Model

被引:3
|
作者
Irincheeva, Irina [1 ]
Cantoni, Eva [2 ,3 ]
Genton, Marc G. [4 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27706 USA
[2] Univ Geneva, Res Ctr Stat, Geneva, Switzerland
[3] Univ Geneva, Dept Econ, Geneva, Switzerland
[4] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Copula; Factor analysis; Latent variable; Mixture of Gaussians; Multivariate random field; Non-normal; Spatial data; LIKELIHOOD INFERENCE; AIR-POLLUTION; ALGORITHM; MORTALITY; SPACE;
D O I
10.1007/s13253-012-0099-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents.
引用
收藏
页码:332 / 353
页数:22
相关论文
共 50 条
  • [1] A Non-Gaussian Spatial Generalized Linear Latent Variable Model
    Irina Irincheeva
    Eva Cantoni
    Marc G. Genton
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2012, 17 : 332 - 353
  • [2] Spatial Generalized Linear Models with Non-Gaussian Translation Processes
    Richardson, Robert
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 4 - 21
  • [3] Spatial Generalized Linear Models with Non-Gaussian Translation Processes
    Robert Richardson
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 4 - 21
  • [4] Identification of Linear Non-Gaussian Latent Hierarchical Structure
    Xie, Feng
    Huang, Biwei
    Chen, Zhengming
    He, Yangbo
    Geng, Zhi
    Zhang, Kun
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [5] Causal Discovery in Linear Non-Gaussian Acyclic Model With Multiple Latent Confounders
    Chen, Wei
    Cai, Ruichu
    Zhang, Kun
    Hao, Zhifeng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (07) : 2816 - 2827
  • [6] Estimation of linear non-Gaussian acyclic models for latent factors
    Shimizu, Shohei
    Hoyer, Patrik O.
    Hyvarinen, Aapo
    [J]. NEUROCOMPUTING, 2009, 72 (7-9) : 2024 - 2027
  • [7] Discovery of linear non-Gaussian acyclic models in the presence of latent classes
    Shimizu, Shohei
    Hyvaerinen, Aapo
    [J]. NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 752 - 761
  • [8] Learning linear non-Gaussian causal models in the presence of latent variables
    Salehkaleybar, Saber
    Ghassami, AmirEmad
    Kiyavash, Negar
    Zhang, Kun
    [J]. Journal of Machine Learning Research, 2020, 21
  • [9] Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables
    Salehkaleybar, Saber
    Ghassami, AmirEmad
    Kiyavash, Negar
    Zhang, Kun
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [10] Generalized Gaussian Process Regression Model for Non-Gaussian Functional Data
    Wang, Bo
    Shi, Jian Qing
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (507) : 1123 - 1133