FedCDR: Federated Cross-Domain Recommendation for Privacy-Preserving Rating Prediction

被引:10
|
作者
Wu Meihan [1 ]
Li, Li [2 ]
Tao, Chang [1 ]
Rigall, Eric [3 ]
Wang Xiaodong [1 ]
Xu Chengzhong [2 ]
机构
[1] Natl Univ Def Technol, Changsha, Peoples R China
[2] Univ Macau, Taipa, Macau, Peoples R China
[3] Ocean Univ China, Qingdao, Peoples R China
关键词
personalized federated learning; cross-domain recommendation; cold-start problem; rating prediction;
D O I
10.1145/3511808.3557320
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The cold-start problem, faced when providing recommendations to newly joined users with no historical interaction record existing in the platform, is one of the most critical problems that negatively impact the performance of a recommendation system. Fortunately, cross-domain recommendation (CDR) is a promising approach for solving this problem, which can exploit the knowledge of these users from source domains to provide recommendations in the target domain. However, this method requires that the central server has the interaction behaviour data in both domains of all the users, which prevents users from participating due to privacy issues. In this work, we propose FedCDR, a federated learning based cross-domain recommendation system that effectively trains the recommendation model while keeping users' raw data and private user-specific parameters located on their own devices. Unlike existing CDR models, a personal module and a transfer module are designed to adapt to the extremely heterogeneous data on the participating devices. Specifically, the personal module extracts private user features for each user, while the transfer module is responsible for transferring the knowledge between the two domains. Moreover, in order to provide personalized recommendations with less storage and communication costs while effectively protecting privacy, we design a personalized update strategy for each client and a personalized aggregation strategy for the server. In addition, we conduct comprehensive experiments on the representative Amazon 5-cores datasets for three popular rating prediction tasks to evaluate the effectiveness of FedCDR. The results show that FedCDR outperforms the state-of-the-art methods in mean absolute error (MAE) and root mean squared error (RMSE). For example, in task Movie&Music, FedCDR can effectively improve the performance up to 65.83% and 55.45% on MAE and RMSE, respectively, when the new users are in the movie domain.
引用
收藏
页码:2179 / 2188
页数:10
相关论文
共 50 条
  • [1] FedCDR:Privacy-preserving federated cross-domain recommendation
    Dengcheng Yan
    Yuchuan Zhao
    Zhongxiu Yang
    Ying Jin
    Yiwen Zhang
    [J]. Digital Communications and Networks., 2022, 8 (04) - 560
  • [2] FedCDR: Privacy-preserving federated cross-domain recommendation
    Yan, Dengcheng
    Zhao, Yuchuan
    Yang, Zhongxiu
    Jin, Ying
    Zhang, Yiwen
    [J]. DIGITAL COMMUNICATIONS AND NETWORKS, 2022, 8 (04) : 552 - 560
  • [3] Privacy-Preserving Federated Cross-Domain Social Recommendation
    Cai, Jianping
    Liu, Yang
    Liu, Ximeng
    Li, Jiayin
    Zhuang, Hongbin
    [J]. TRUSTWORTHY FEDERATED LEARNING, FL 2022, 2023, 13448 : 144 - 158
  • [4] Privacy-preserving Cross-domain Recommendation with Federated Graph Learning
    Tian, Changxin
    Xie, Yuexiang
    Chen, Xu
    Li, Yaliang
    Zhao, Xin
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (05)
  • [5] Privacy-Preserving Cross-Domain Sequential Recommendation
    Lin, Zhaohao
    Pan, Weike
    Ming, Zhong
    [J]. 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1139 - 1144
  • [6] Privacy-Preserving Matrix Factorization for Cross-Domain Recommendation
    Ogunseyi, Taiwo Blessing
    Avoussoukpo, Cossi Blaise
    Jiang, Yiqiang
    [J]. IEEE ACCESS, 2021, 9 : 91027 - 91037
  • [7] A Study on Privacy-Preserving Transformer Model for Cross-Domain Recommendation
    Ning, Jing
    Li, Kin Fun
    [J]. ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 4, AINA 2024, 2024, 202 : 424 - 435
  • [8] Win-Win: A Privacy-Preserving Federated Framework for Dual-Target Cross-Domain Recommendation
    Chen, Gaode
    Zhang, Xinghua
    Su, Yijun
    Lai, Yantong
    Xiang, Ji
    Zhang, Junbo
    Zheng, Yu
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4149 - 4156
  • [9] PPGenCDR: A Stable and Robust Framework for Privacy-Preserving Cross-Domain Recommendation
    Liao, Xinting
    Liu, Weiming
    Zheng, Xiaolin
    Yao, Binhui
    Chen, Chaochao
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4453 - 4461
  • [10] Differential Private Knowledge Transfer for Privacy-Preserving Cross-Domain Recommendation
    Chen, Chaochao
    Wu, Huiwen
    Su, Jiajie
    Lyu, Lingjuan
    Zheng, Xiaolin
    Wang, Li
    [J]. PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1455 - 1465