Cell Wall-Bound Invertase Limits Sucrose Export and Is Involved in Symptom Development and Inhibition of Photosynthesis during Compatible Interaction between Tomato and Xanthomonas campestris pv vesicatoria

被引:155
|
作者
Kocal, Nurcan [1 ]
Sonnewald, Uwe [1 ]
Sonnewald, Sophia [1 ]
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Biochem, D-91058 Erlangen, Germany
关键词
D O I
10.1104/pp.108.127977
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cell wall-bound invertase (cw-Inv) plays an important role in carbohydrate partitioning and regulation of sink-source interaction. There is increasing evidence that pathogens interfere with sink-source interaction, and induction of cw-Inv activity has frequently been shown in response to pathogen infection. To investigate the role of cw-Inv, transgenic tomato (Solanum lycopersicum) plants silenced for the major leaf cw-Inv isoforms were generated and analyzed during normal growth and during the compatible interaction with Xanthomonas campestris pv vesicatoria. Under normal growth conditions, activities of sucrolytic enzymes as well as photosynthesis and respiration were unaltered in the transgenic plants compared with wild-type plants. However, starch levels of source leaves were strongly reduced, which was most likely caused by an enhanced sucrose exudation rate. Following X. campestris pv vesicatoria infection, cw-Inv-silenced plants showed an increased sucrose to hexose ratio in the apoplast of leaves. Symptom development, inhibition of photosynthesis, and expression of photosynthetic genes were clearly delayed in transgenic plants compared with wild-type plants. In addition, induction of senescence-associated and pathogenesis-related genes observed in infected wild-type plants was abolished in cw-Inv-silenced tomato lines. These changes were not associated with decreased bacterial growth. In conclusion, cw-Inv restricts carbon export from source leaves and regulates the sucrose to hexose ratio in the apoplast. Furthermore, an increased apoplastic hexose to sucrose ratio can be linked to inhibition of photosynthesis and induction of pathogenesis-related gene expression but does not significantly influence bacterial growth. Indirectly, bacteria may benefit from low invertase activity, since the longevity of host cells is raised and basal defense might be dampened.
引用
收藏
页码:1523 / 1536
页数:14
相关论文
共 2 条
  • [1] Regulation of Cell Wall-Bound Invertase in Pepper Leaves by Xanthomonas campestris pv. vesicatoria Type Three Effectors
    Sonnewald, Sophia
    Priller, Johannes P. R.
    Schuster, Julia
    Glickmann, Eric
    Hajirezaei, Mohammed-Reza
    Siebig, Stefan
    Mudgett, Mary Beth
    Sonnewald, Uwe
    [J]. PLOS ONE, 2012, 7 (12):
  • [2] Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria
    Zurbriggen, Matias D.
    Carrillo, Nestor
    Tognetti, Vanesa B.
    Melzer, Michael
    Peisker, Martin
    Hause, Bettina
    Hajirezaei, Mohammad-Reza
    [J]. PLANT JOURNAL, 2009, 60 (06): : 962 - 973