New higher-order bounds on effective transverse elastic moduli of three-phase fiber-reinforced composites with randomly located and interacting aligned circular fibers

被引:8
|
作者
Ko, Yu-Fu [1 ]
Ju, J. W. [2 ,3 ]
机构
[1] Calif State Univ Long Beach, Dept Civil Engn & Construct Engn Management, Long Beach, CA 90840 USA
[2] Guangxi Univ, Coll Civil Engn & Architecture, Nanning 530004, Peoples R China
[3] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
关键词
EFFECTIVE ELASTOPLASTIC BEHAVIOR; METAL-MATRIX COMPOSITES; MICROMECHANICAL DAMAGE MODEL; FIBRE-STRENGTHENED MATERIALS; MORI-TANAKA THEORY; MECHANICAL-PROPERTIES; SPHEROIDAL INHOMOGENEITIES; FIELD; INCLUSION;
D O I
10.1007/s00707-012-0696-y
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A higher-order structure for three-phase composites containing randomly located yet unidirectionally aligned circular fibers is proposed to predict effective transverse elastic moduli based on the probabilistic spatial distribution of circular fibers, the pairwise fiber interactions, and the ensemble-area homogenization method. Specifically, the two inhomogeneity phases feature distinct elastic properties and sizes. In the special event, two-phase composites with same elastic properties and sizes of fibers are studied. Two non-equivalent formulations are considered in detail to derive effective transverse elastic moduli of two-phase composites leading to new higher-order bounds. Furthermore, the effective transverse elastic moduli for an incompressible matrix containing randomly located and identical circular rigid fibers and voids are derived. It is demonstrated that significant improvements in the singular problems and accuracy are achieved by the proposed methodology. Numerical examples and comparisons among our theoretical predictions, available experimental data, and other analytical predictions are rendered to illustrate the potential of the present method.
引用
收藏
页码:2437 / 2458
页数:22
相关论文
共 14 条