The features of energy transfer to the emission centers in ZnWO4 and ZnWO4:Mo

被引:22
|
作者
Krutyak, N. R. [1 ]
Mikhailin, V. V. [1 ,2 ]
Vasil'ev, A. N. [2 ]
Spassky, D. A. [2 ,3 ]
Tupitsyna, I. A. [4 ]
Dubovik, A. M. [4 ]
Galashov, E. N. [5 ]
Shlegel, V. N. [5 ]
Belsky, A. N. [6 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Synchrotron Radiat Lab, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[3] Univ Tartu, Inst Phys, EE-51014 Tartu, Estonia
[4] NAS Ukraine, Inst Scintillat Mat, UA-61001 Kharkov, Ukraine
[5] Nikolaev Inst Inorgan Chem SB RAS, Novosibirsk 630090, Russia
[6] Univ Lyon 1, CNRS, Inst Light & Matter, F-69622 Lyon, France
关键词
Zinc tungstate; Luminescence; Energy transfer; Cryogenic scintillator; Onsager sphere; ELECTRON-HOLE PAIRS; DOUBLE-BETA-DECAY; SINGLE-CRYSTALS; AB-INITIO; METAL TUNGSTATES; LUMINESCENCE; SCINTILLATION; ABSORPTION; SPECTROSCOPY; PERFORMANCE;
D O I
10.1016/j.jlumin.2013.06.039
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The process of energy transfer to the emission centers is studied in ZnWO4 and ZnWO4:Mo single crystals in the temperature range 10-300 K. A numerical simulation describing the process is presented; the temperature dependence of energy transfer efficiency to the intrinsic emission centers in ZnWO4 is shown to be defined by the modification of Onsager sphere radius. A competitive role of radiative relaxation channel related to the impurity of molybdenum is studied in ZnWO4:Mo. It is shown that below 60 K the energy transfer to the MoO5 emission centers by free charge carriers terminates due to the self-trapping of holes at WO6 complexes. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:105 / 111
页数:7
相关论文
共 50 条
  • [1] Time-resolved spectroscopy in ZnWO4 and ZnWO4:Fe
    Grigorjeva, L
    Pankratov, V
    Millers, D
    Chernov, S
    Nagirnyi, V
    Kotlov, A
    Watterich, A
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2003, 158 (1-6): : 135 - 139
  • [2] Energy transfer in ZnWO4 and CdWO4 scintillators
    Nagirnyi, V
    Feldbach, E
    Jönsson, L
    Kirm, M
    Kotlov, A
    Lushchik, A
    Nefedov, VA
    Zadneprovski, BI
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 486 (1-2): : 395 - 398
  • [3] SCINTILLATION PROPERTIES OF ZNWO4
    GRASSMANN, H
    MOSER, HG
    LORENZ, E
    JOURNAL OF LUMINESCENCE, 1985, 33 (01) : 109 - 113
  • [4] CRYSTAL STRUCTURE OF ZNWO4
    FILIPENKO, OS
    POBEDIMSKAYA, EA
    BELOV, NV
    SOVIET PHYSICS CRYSTALLOGRAPHY, USSR, 1968, 13 (01): : 127 - +
  • [5] Hydrothermal synthesis and photoluminescent properties of ZnWO4 and Eu3+-doped ZnWO4
    Wen, FS
    Zhao, X
    Huo, H
    Chen, JS
    Shu-Lin, E
    Zhang, JH
    MATERIALS LETTERS, 2002, 55 (03) : 152 - 157
  • [6] ZnWO4和掺杂ZnWO4光谱及衰减时间的研究
    金泽宸
    周亚栋
    陈纲
    张永红
    尹瑞华
    曾春光
    李成基
    祝玉灿
    红外与毫米波学报, 1991, (01) : 73 - 79
  • [7] Paramagnetic centers in ZnWO4: Tm single crystals
    Watterich, A
    Kappers, LA
    Gilliam, OR
    SOLID STATE COMMUNICATIONS, 1997, 104 (11) : 683 - 688
  • [8] Photocatalytic activities of ZnWO4 and Bi@ZnWO4 nanorods
    Wu, Yeqiu
    Zhou, Shasha
    He, Tao
    Jin, Xinyuan
    Lun, Liyong
    APPLIED SURFACE SCIENCE, 2019, 484 : 409 - 413
  • [9] Characterization and performance study of GR/ZnWO4 and MoS2/ZnWO4 nanocomposite photocatalysts
    Wang, Fei
    Liu, Xiangchun
    Hou, Shan
    Yang, Zhe
    Zhao, Kejia
    Zhang, Miao
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (04)
  • [10] The chemistry of ZnWO4 nanoparticle formation
    Bojesen, Espen D.
    Jensen, Kirsten M. O.
    Tyrsted, Christoffer
    Mamakhel, Aref
    Andersen, Henrik L.
    Reardon, Hazel
    Chevalier, Jacques
    Dippel, Ann-Christin
    Iversen, Bo B.
    CHEMICAL SCIENCE, 2016, 7 (10) : 6394 - 6406