Geometry and dynamics of admissible metrics in measure spaces

被引:23
|
作者
Vershik, Anatoly M. [1 ]
Zatitskiy, Pavel B. [1 ]
Petrov, Fedor V. [1 ]
机构
[1] Russian Acad Sci, Math Inst, St Petersbrug Branch, St Petersburg 191023, Russia
来源
关键词
Admissible metric; Measure space; Automophisms; Scaling entropy; Criteria of discreteness spectrum; ENTROPY; EXAMPLES; THEOREM;
D O I
10.2478/s11533-012-0149-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a wide class of metrics in a Lebesgue space, namely the class of so-called admissible metrics. We consider the cone of admissible metrics, introduce a special norm in it, prove compactness criteria, define the epsilon-entropy of a measure space with an admissible metric, etc. These notions and related results are applied to the theory of transformations with invariant measure; namely, we study the asymptotic properties of orbits in the cone of admissible metrics with respect to a given transformation or a group of transformations. The main result of this paper is a new discreteness criterion for the spectrum of an ergodic transformation: we prove that the spectrum is discrete if and only if the epsilon-entropy of the averages of some (and hence any) admissible metric over its trajectory is uniformly bounded.
引用
收藏
页码:379 / 400
页数:22
相关论文
共 50 条
  • [1] Dynamics of metrics in measure spaces and scaling entropy
    Vershik, A. M.
    Veprev, G. A.
    Zatitskii, P. B.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (03) : 443 - 499
  • [2] On the geometry of metric measure spaces. II
    Sturm, Karl-Theodor
    [J]. ACTA MATHEMATICA, 2006, 196 (01) : 133 - 177
  • [3] Geometry and Dynamics of the Besicovitch and Weyl Spaces
    Salo, Ville
    Torma, Ilkka
    [J]. DEVELOPMENTS IN LANGUAGE THEORY (DLT 2012), 2012, 7410 : 465 - 470
  • [4] The geometry of Hamming-type metrics and their embeddings into Banach spaces
    Baudier, Florent P.
    Lancien, Gilles
    Motakis, Pavlos
    Schlumprecht, Thomas
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2021, 244 (02) : 681 - 725
  • [5] Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds
    Micheli, M.
    Michor, P. W.
    Mumford, D.
    [J]. IZVESTIYA MATHEMATICS, 2013, 77 (03) : 541 - 570
  • [6] The geometry of Hamming-type metrics and their embeddings into Banach spaces
    Florent P. Baudier
    Gilles Lancien
    Pavlos Motakis
    Thomas Schlumprecht
    [J]. Israel Journal of Mathematics, 2021, 244 : 681 - 725
  • [7] The geometry of loop spaces I: Hs-Riemannian metrics
    Maeda, Yoshiaki
    Rosenberg, Steven
    Torres-Ardila, Fabian
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (04)
  • [8] Dynamics of fractals in Euclidean and measure spaces
    Islam, Md. Shahidul
    Islam, Md. Jahurul
    [J]. 1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [9] SMOOTH METRIC MEASURE SPACES AND QUASI-EINSTEIN METRICS
    Case, Jeffrey S.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (10)
  • [10] On the Geometry of Metric Measure Spaces with Variable Curvature Bounds
    Ketterer, Christian
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (03) : 1951 - 1994