A logic for classical conditional events was investigated by Dubois and Prade. In their approach, the truth value of a conditional event may be undetermined. In this paper we extend the treatment to many-valued events. Then we support the thesis that probability over partially undetermined events is a conditional probability, and we interpret it in terms of bets in the style of de Finetti. Finally, we show that the whole investigation can be carried out in a logical and algebraic setting, and we find a logical characterization of coherence for assessments of partially undetermined events.