A weak-strong convergence property and symmetry of minimizers of constrained variational problems in RN

被引:2
|
作者
Hajaiej, Hichem [2 ]
Kroemer, Stefan [1 ]
机构
[1] Univ Cologne, Math Inst, D-50923 Cologne, Germany
[2] King Saud Univ, Riyadh 11451, Saudi Arabia
关键词
Symmetry; Iterated polarization; Weak-strong convergence; INTEGRAL FUNCTIONALS; LOWER SEMICONTINUITY; SYMMETRIZATION; SEQUENCES;
D O I
10.1016/j.jmaa.2011.12.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a weak-strong convergence result for functionals of the form integral(RN) j(x, u, Du)dx on W-1.p, along equiintegrable sequences. We will then use it to study cases of equality in the extended Polya-Szego inequality and discuss applications of such a result to prove the symmetry of minimizers of a class of variational problems including nonlocal terms under multiple constraints. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:915 / 931
页数:17
相关论文
共 50 条