Thermo-visual feature fusion for object tracking using multiple spatiogram trackers

被引:50
|
作者
Conaire, Ciaran O. [1 ]
O'Connor, Noel E. [1 ]
Smeaton, Alan [1 ]
机构
[1] Dublin City Univ, Adapt Informat Cluster, Dublin 9, Ireland
基金
爱尔兰科学基金会;
关键词
thermal infrared; visible spectrum; fusion; tracking; spatiogram;
D O I
10.1007/s00138-007-0078-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a framework that can efficiently combine features for robust tracking based on fusing the outputs of multiple spatiogram trackers. This is achieved without the exponential increase in storage and processing that other multimodal tracking approaches suffer from. The framework allows the features to be split arbitrarily between the trackers, as well as providing the flexibility to add, remove or dynamically weight features. We derive a mean-shift type algorithm for the framework that allows efficient object tracking with very low computational overhead. We especially target the fusion of thermal infrared and visible spectrum features as the most useful features for automated surveillance applications. Results are shown on multimodal video sequences clearly illustrating the benefits of combining multiple features using our framework.
引用
收藏
页码:483 / 494
页数:12
相关论文
共 50 条
  • [1] Thermo-visual feature fusion for object tracking using multiple spatiogram trackers
    Ciarán Ó Conaire
    Noel E. O’Connor
    Alan Smeaton
    [J]. Machine Vision and Applications, 2008, 19 : 483 - 494
  • [2] Comparison of fusion methods for thermo-visual surveillance tracking
    Conaire, C. O.
    O'Connor, N. E.
    Cooke, E.
    Smeaton, A. F.
    [J]. 2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 413 - 419
  • [3] Thermo-visual video fusion using probabilistic graphical model for human tracking
    Chen, Siyue
    Zhu, Wenjie
    Leung, Henry
    [J]. PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 1926 - 1929
  • [4] Multiple Feature Fusion for Object Tracking
    Zhou, Yu
    Rao, Cong
    Lu, Qin
    Bai, Xiang
    Liu, Wenyu
    [J]. INTELLIGENT SCIENCE AND INTELLIGENT DATA ENGINEERING, ISCIDE 2011, 2012, 7202 : 145 - 152
  • [5] Adaptive feature fusion for visual object tracking
    Zhao, Shaochuan
    Xu, Tianyang
    Wu, Xiao-Jun
    Zhu, Xue-Feng
    [J]. PATTERN RECOGNITION, 2021, 111
  • [6] Multiple object tracking using feature fusion in hierarchical LSTMs
    Hassan, Ehtesham
    [J]. JOURNAL OF ENGINEERING-JOE, 2020, 2020 (10): : 893 - 899
  • [7] Object tracking using cluster of elastically linked feature trackers
    Cilia, Andrew
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2008, 17 (02)
  • [8] Visual Perception based Adaptive Feature Fusion for Visual Object Tracking
    Krieger, Evan
    Asari, Vijayan K.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1345 - 1350
  • [9] CATrack: Convolution and Attention Feature Fusion for Visual Object Tracking
    Zhang, Longkun
    Wen, Jiajun
    Dai, Zichen
    Zhou, Rouyi
    Lai, Zhihui
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 469 - 480
  • [10] Adaptive cascaded and parallel feature fusion for visual object tracking
    Jun Wang
    Sixuan Li
    Kunlun Li
    Qizhen Zhu
    [J]. The Visual Computer, 2024, 40 : 2119 - 2138