Method development and initial results of testing for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in waterproof sunscreens

被引:11
|
作者
Keawmanee, Sasipin [1 ]
Boontanon, Suwanna Kitpati [1 ]
Boontanon, Narin [2 ]
机构
[1] Mahidol Univ, Fac Engn, Dept Civil & Environm Engn, Salaya 73170, Nakhon Pathom, Thailand
[2] Mahidol Univ, Fac Environm & Resource Studies, Salaya 73170, Nakhon Pathom, Thailand
来源
ENVIRONMENTAL ENGINEERING RESEARCH | 2015年 / 20卷 / 02期
关键词
Centrifugation; LC-MS/MS; Personal care products; Perfluorinated compounds; Pressurized liquid extraction (PLE); Solid phase extraction (SPE);
D O I
10.4491/eer.2014.S1.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA) are persistent environmental pollutants, extremely stable, and possibly adversely affect human health. They are widely used in many industries and consumer goods, including sunscreen products. These substances are stable chemicals made of long carbon chains, having both lipid-and water-repellent qualities. The research objectives are (1) to find the most effective method for the preparation of semi-liquid samples by comparing solid phase extraction (SPE) and centrifugation after Pressurized liquid extraction (PLE), and (2) to determine the contamination levels of PFOS and PFOA in waterproof sunscreen samples. All sunscreen samples were analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Sunscreen samples were purchased from domestic and international brands sold in Thailand. Special chemical properties were considered for the selection of samples, e.g., those found in waterproof, sweat resistant, water resistant, and non-stick products. Considering the factors of physical properties, e.g., operation time, chemical consumption, and recovery percentage for selecting methods to develop, the centrifugation method using 2 mL of extracted sample with the conditions of 12,000 rpm and 5 degrees C for 1 hour after PLE was chosen. The highest concentrations of PFOS and PFOA were detected at 0.0671 ng/g and 21.0644 ng/g, respectively. Even though present concentrations are found at ng/g levels, the daily use of sunscreen products is normally several grams. Therefore, a risk assessment of PFOS and PFOA contamination in sunscreen products is an important concern, and more attention needs to be paid to the long-term effects on human health.
引用
收藏
页码:127 / 132
页数:6
相关论文
共 50 条
  • [1] Toxicology of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS)
    Pabel, U.
    Woelfle, D.
    Lahrssen-Wiederholt, M.
    Lampen, A.
    [J]. JOURNAL FUR VERBRAUCHERSCHUTZ UND LEBENSMITTELSICHERHEIT-JOURNAL OF CONSUMER PROTECTION AND FOOD SAFETY, 2008, 3 (03): : 252 - 258
  • [2] Photocatalytic degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS)
    Zhang, Pengyi
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [3] Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants
    Yu, Jing
    Hu, Jianyong
    Tanaka, Shuhei
    Fujii, Shigeo
    [J]. WATER RESEARCH, 2009, 43 (09) : 2399 - 2408
  • [4] Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles
    Supreeyasunthorn, Phenpimuk
    Boontanon, Suwanna K.
    Boontanon, Narin
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 2016, 51 (06): : 472 - 477
  • [5] Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) in Water Environment of Singapore
    Jiangyong Hu
    Jing Yu
    Shuhei Tanaka
    Shigeo Fujii
    [J]. Water, Air, & Soil Pollution, 2011, 216 : 179 - 191
  • [6] Destruction of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) by Ball Milling
    Zhang, Kunlun
    Huang, Jun
    Yu, Gang
    Zhang, Qiwu
    Deng, Shubo
    Wang, Bin
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (12) : 6471 - 6477
  • [7] Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) in Water Environment of Singapore
    Hu, Jiangyong
    Yu, Jing
    Tanaka, Shuhei
    Fujii, Shigeo
    [J]. WATER AIR AND SOIL POLLUTION, 2011, 216 (1-4): : 179 - 191
  • [8] Partition behavior of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in riverine sediments
    Liu, R. X.
    Tian, J. Y.
    Gong, X. X.
    Liu, X. L.
    Li, B.
    Liu, Y. Y.
    [J]. DESALINATION AND WATER TREATMENT, 2017, 91 : 287 - 292
  • [9] Carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from Soil to Plants
    Stahl, T.
    Heyn, J.
    Thiele, H.
    Huether, J.
    Failing, K.
    Georgii, S.
    Brunn, H.
    [J]. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2009, 57 (02) : 289 - 298
  • [10] A Review of Treatment Technologies for Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) in Water
    Cheng, Juntao
    Huang, Liming
    Li, Yunfeng
    Zhang, Zhen
    Mu, Runzhi
    Liu, Changqing
    Hu, Shuncheng
    Xiao, Yihua
    Xu, Mengchen
    [J]. PROCESSES, 2023, 11 (08)