Uncertainty and certainty relations for complementary qubit observables in terms of Tsallis' entropies

被引:18
|
作者
Rastegin, Alexey E. [1 ]
机构
[1] Irkutsk State Univ, Dept Theoret Phys, Irkutsk 664003, Russia
关键词
Pauli observables; Quantum measurement; Uncertainty principle; Generalized entropy; Concavity; QUANTUM; INFORMATION;
D O I
10.1007/s11128-013-0568-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Uncertainty relations for more than two observables have found use in quantum information, though commonly known relations pertain to a pair of observables. We present novel uncertainty and certainty relations of state-independent form for the three Pauli observables with use of the Tsallis alpha-entropies. For all real alpha is an element of (0; 1] and integer alpha >= 2, lower bounds on the sum of three alpha-entropies are obtained. These bounds are tight in the sense that they are always reached with certain pure states. The necessary and sufficient condition for equality is that the qubit state is an eigenstate of one of the Pauli observables. Using concavity with respect to the parameter alpha, we derive approximate lower bounds for non-integer alpha is an element of (1; +infinity). In the case of pure states, the developed method also allows to obtain upper bounds on the entropic sum for real alpha is an element of (0; 1] and integer alpha >= 2. For applied purposes, entropic bounds are often used with averaging over the individual entropies. Combining the obtained bounds leads to a band, in which the rescaled average alpha-entropy ranges in the pure-state case. A width of this band is essentially dependent on alpha. It can be interpreted as an evidence for sensitivity in quantifying the complementarity.
引用
收藏
页码:2947 / 2963
页数:17
相关论文
共 50 条