Unsupervised Classification of PolSAR Imagery via Kernel Sparse Subspace Clustering

被引:12
|
作者
Song, Hui [1 ,2 ]
Yang, Wen [1 ,2 ]
Zhong, Neng [1 ,2 ]
Xu, Xin [1 ,2 ]
机构
[1] Wuhan Univ, Signal Proc Lab, Sch Elect Informat, Wuhan 430079, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Dictionary learning; polarimetric synthetic aperture radar (PolSAR); riemannian manifold; sparse subspace clustering (SSC);
D O I
10.1109/LGRS.2016.2593098
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Unsupervised classification is very important for the fully polarimetric synthetic aperture radar (PolSAR) image interpretation. The PolSAR covariance matrices, as one of the most widely used representations for PolSAR data, are Hermitian positive definite (HPD) and form a Riemannian manifold when endowed with an appropriate metric. Considering their geometric properties, we propose a new clustering algorithm by embedding the HPD matrices into Hilbert space and introduce sparse subspace clustering in the newly formed highly dimensional space to recover the latent cluster structure. Moreover, an improved scalable scheme is presented to classify large-scale PolSAR images, which involves dictionary learning and spatially reinforced joint coding for robustness against the speckle noise. Experimental results on real fully PolSAR data sets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:1487 / 1491
页数:5
相关论文
共 50 条
  • [1] Sparse Subspace Clustering-Based Feature Extraction for PolSAR Imagery Classification
    Ren, Bo
    Hou, Biao
    Zhao, Jin
    Jiao, Licheng
    [J]. REMOTE SENSING, 2018, 10 (03):
  • [2] KERNEL SPARSE SUBSPACE CLUSTERING
    Patel, Vishal M.
    Vidal, Rene
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2849 - 2853
  • [3] Human Motion Segmentation via Robust Kernel Sparse Subspace Clustering
    Xia, Guiyu
    Sun, Huaijiang
    Feng, Lei
    Zhang, Guoqing
    Liu, Yazhou
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 135 - 150
  • [4] Unsupervised PolSAR image classification based on sparse representation
    Ji, Yaqi
    Sumantyo, Josaphat Tetuko Sri
    Chua, Ming Yam
    Waqar, Mirza Muhammad
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (16) : 6224 - 6248
  • [5] Band Selection Using Improved Sparse Subspace Clustering for Hyperspectral Imagery Classification
    Sun, Weiwei
    Zhang, Liangpei
    Du, Bo
    Li, Weiyue
    Lai, Yenming Mark
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2784 - 2797
  • [6] Unsupervised PolSAR Image Classification Using Discriminative Clustering
    Bi, Haixia
    Sun, Jian
    Xu, Zongben
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (06): : 3531 - 3544
  • [7] Superpixel-Based Unsupervised Classification of PolSAR Imagery Using Wishart Mixture Models and Spectral Clustering
    Yang, Xiangli
    Yang, Wen
    Song, Hui
    Huang, Pingping
    [J]. 11TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2016), 2016, : 1228 - 1231
  • [8] UNSUPERVISED CLASSIFICATION OF THE WEAK BACKSCATTERING SCATTERERS BY THE USE OF POLSAR IMAGERY
    Zhao, Lingli
    Yang, Jie
    Li, Pingxiang
    Shi, Lei
    Xu, Jinyan
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4714 - 4717
  • [9] A Hierarchical Fully Convolutional Network Integrated with Sparse and Low-Rank Subspace Representations for PolSAR Imagery Classification
    Wang, Yan
    He, Chu
    Liu, Xinlong
    Liao, Mingsheng
    [J]. REMOTE SENSING, 2018, 10 (02)
  • [10] Multiple Kernel Subspace Learning for Clustering and Classification
    Chi, Ziqiu
    Wang, Zhe
    Wang, Bolu
    Fang, Zhongli
    Zhu, Zonghai
    Li, Dongdong
    Du, Wenli
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (07) : 7278 - 7290