SCUDO: a tool for signature-based clustering of expression profiles

被引:12
|
作者
Lauria, Mario [1 ]
Moyseos, Petros [1 ]
Priami, Corrado [1 ,2 ]
机构
[1] Univ Trento, Microsoft Res, Ctr Computat & Syst Biol COSBI, I-38068 Rovereto, TN, Italy
[2] Univ Trento, Dept Math, I-38123 Povo, TN, Italy
关键词
CYTOSCAPE;
D O I
10.1093/nar/gkv449
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SCUDO (Signature-based ClUstering for DiagnOstic purposes) is an online tool for the analysis of gene expression profiles for diagnostic and classification purposes. The tool is based on a new method for the clustering of profiles based on a subject-specific, as opposed to disease-specific, signature. Our approach relies on construction of a reference map of transcriptional signatures, from both healthy and affected subjects, derived from their respective mRNA or miRNA profiles. A diagnosis for a new individual can then be performed by determining the position of the individual's transcriptional signature on the map. The diagnostic power of our method has been convincingly demonstrated in an open scientific competition (SBV Improver Diagnostic Signature Challenge), scoring second place overall and first place in one of the sub-challenges.
引用
收藏
页码:W188 / W192
页数:5
相关论文
共 50 条
  • [1] Signature-Based Clustering for Analysis of the Wound Microbiome
    Chappell, Timothy
    Geva, Shlomo
    Hogan, James M.
    Huygens, Flavia
    Kelly, Wayne
    Perrin, Dimitri
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 339 - 346
  • [2] Rapid analysis of metagenomic data using signature-based clustering
    Chappell, Timothy
    Geva, Shlomo
    Hogan, James M.
    Huygens, Flavia
    Rathnayake, Irani U.
    Rudd, Stephen
    Kelly, Wayne
    Perrin, Dimitri
    BMC BIOINFORMATICS, 2018, 19
  • [3] Rapid analysis of metagenomic data using signature-based clustering
    Timothy Chappell
    Shlomo Geva
    James M. Hogan
    Flavia Huygens
    Irani U. Rathnayake
    Stephen Rudd
    Wayne Kelly
    Dimitri Perrin
    BMC Bioinformatics, 19
  • [4] Reproducibility of gene expression signature-based predictions in replicate experiments
    Anderson, K
    Hess, KR
    Kapoor, M
    Tirrel, S
    Courtemanche, J
    Wang, BL
    Wu, Y
    Gong, Y
    Hortobagyi, GN
    Symmans, WF
    Pusztai, L
    CLINICAL CANCER RESEARCH, 2006, 12 (06) : 1721 - 1727
  • [5] Oblivious signature-based envelope
    Li, NH
    Du, WL
    Boneh, D
    DISTRIBUTED COMPUTING, 2005, 17 (04) : 293 - 302
  • [6] Signature-based landscape design
    Woodward, JH
    ECOLOGICAL DESIGN AND PLANNING, 1997, : 201 - 225
  • [7] Signature-based image identification
    Abdel-Mottaleb, M
    Vaithilingam, G
    Krishnamachari, S
    MULTIMEDIA SYSTEMS AND APPLICATIONS II, 1999, 3845 : 22 - 28
  • [8] Oblivious signature-based envelope
    Ninghui Li
    Wenliang Du
    Dan Boneh
    Distributed Computing, 2005, 17 : 293 - 302
  • [9] Signature-based document retrieval
    Chalechale, A
    Naghdy, G
    Mertins, T
    PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2003, : 597 - 600
  • [10] Gene expression signature-based prognostic risk score in patients with glioblastoma
    Kawaguchi, Atsushi
    Yajima, Naoki
    Tsuchiya, Naoto
    Homma, Jumpei
    Sano, Masakazu
    Natsumeda, Manabu
    Takahashi, Hitoshi
    Fujii, Yukihiko
    Kakuma, Tatsuyuki
    Yamanaka, Ryuya
    CANCER SCIENCE, 2013, 104 (09) : 1205 - 1210