Sparse principal component analysis in cancer research

被引:18
|
作者
Hsu, Ying-Lin [1 ]
Huang, Po-Yu [1 ]
Chen, Dung-Tsa [2 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
[2] Univ S Florida, H Lee Moffitt Canc Ctr, Dept Biostat & Bioinformat, Tampa, FL 33682 USA
基金
美国国家卫生研究院;
关键词
Sparse principal component analysis (sparse PCA); VARIABLE SELECTION; CELL; PREDICTION; RISK; REGULARIZATION; DECOMPOSITION; SIGNATURES;
D O I
10.3978/j.issn.2218-676X.2014.05.06
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
A critical challenging component in analyzing high-dimensional data in cancer research is how to reduce the dimension of data and how to extract relevant features. Sparse principal component analysis (PCA) is a powerful statistical tool that could help reduce data dimension and select important variables simultaneously. In this paper, we review several approaches for sparse PCA, including variance maximization (VM), reconstruction error minimization (REM), singular value decomposition (SVD), and probabilistic modeling (PM) approaches. A simulation study is conducted to compare PCA and the sparse PCAs. An example using a published gene signature in a lung cancer dataset is used to illustrate the potential application of sparse PCAs in cancer research.
引用
收藏
页码:182 / 190
页数:9
相关论文
共 50 条
  • [1] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [2] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    [J]. Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [3] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [4] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [5] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [6] Streaming Sparse Principal Component Analysis
    Yang, Wenzhuo
    Xu, Huan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 494 - 503
  • [7] Sparse Generalised Principal Component Analysis
    Smallman, Luke
    Artemiou, Andreas
    Morgan, Jennifer
    [J]. PATTERN RECOGNITION, 2018, 83 : 443 - 455
  • [8] Weighted sparse principal component analysis
    Van Deun, Katrijn
    Thorrez, Lieven
    Coccia, Margherita
    Hasdemir, Dicle
    Westerhuis, Johan A.
    Smilde, Age K.
    Van Mechelen, Iven
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 195
  • [9] Biobjective sparse principal component analysis
    Carrizosa, Emilio
    Guerrero, Vanesa
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 132 : 151 - 159
  • [10] Sparse kernel principal component analysis
    Tipping, ME
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 633 - 639