REDUCED-BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATION FOR MANY-PARAMETER HEAT CONDUCTION PROBLEMS

被引:25
|
作者
Sen, S. [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1080/10407790802424204
中图分类号
O414.1 [热力学];
学科分类号
摘要
Reduced-basis (RB) methods enable repeated and rapid evaluation of parametrized partial differential equation (PDE)-constrained input-output relationships required in the context of parameter estimation, design, optimization, and control. These methods have been successfully applied to problems with few parameters [O(3)]. Here we introduce efficient sampling algorithms that enable the efficient exploration of many parameters. We apply the RB methods to an illustrative heat conduction problem with P = 25 parameters, obtaining accurate and certified results in real time with significant computational savings relative to standard finite-element techniques.
引用
收藏
页码:369 / 389
页数:21
相关论文
共 50 条
  • [1] Rapid inverse parameter estimation using reduced-basis approximation with asymptotic error estimation
    Liu, G. R.
    Zaw, Khin
    Wang, Y. Y.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (45-48) : 3898 - 3910
  • [2] Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds
    Veroy, K
    Prud'homme, C
    Patera, AT
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 337 (09) : 619 - 624
  • [3] A slack approach to reduced-basis approximation and error estimation for variational inequalities
    Zhang, Zhenying
    Bader, Eduard
    Veroy, Karen
    [J]. COMPTES RENDUS MATHEMATIQUE, 2016, 354 (03) : 283 - 289
  • [4] A posteriori error estimation and basis adaptivity for reduced-basis approximation of nonaffine-parametrized linear elliptic partial differential equations
    Nguyen, N. C.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 983 - 1006
  • [5] Reduced basis approximation and a posteriori error estimation for a Boltzmann model
    Patera, Anthony T.
    Ronquist, Einar M.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (29-30) : 2925 - 2942
  • [6] A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations:: "convex inverse" bound conditioners
    Veroy, K
    Rovas, DV
    Patera, AT
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 : 1007 - 1028
  • [7] Reduced basis approximation and a posteriori error estimation for stress intensity factors
    Huynh, D. B. P.
    Patera, A. T.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 72 (10) : 1219 - 1259
  • [8] REDUCED BASIS METHODS AND A POSTERIORI ERROR ESTIMATORS FOR HEAT TRANSFER PROBLEMS
    Rozza, G.
    Nguyen, C. N.
    Patera, A. T.
    Deparis, S.
    [J]. HT2009: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2009, VOL 2, 2009, : 753 - 762
  • [9] REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATES FOR PARAMETRIZED ELLIPTIC EIGENVALUE PROBLEMS
    Fumagalli, Ivan
    Manzoni, Andrea
    Parolini, Nicola
    Verani, Marco
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1857 - 1885
  • [10] REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS
    Knezevic, David J.
    Ngoc-Cuong Nguyen
    Patera, Anthony T.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (07): : 1415 - 1442