The Nehari manifold for fractional Kirchhoff problems involving singular and critical terms

被引:40
|
作者
Fiscella, Alessio [1 ]
Mishra, Pawan Kumar [2 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, IMECC Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Paraiba, Dept Matemat, Cidade Univ Campus 1, BR-58051900 Joao Pessoa, Paraiba, Brazil
基金
巴西圣保罗研究基金会;
关键词
Kirchhoff type problems; Fractional Laplacian; Singularities; Critical nonlinearities; Nehari manifolds; MULTIPLE POSITIVE SOLUTIONS; LAPLACIAN;
D O I
10.1016/j.na.2018.09.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we study the following singular Kirchhoff problem {M(integral integral(R2N) vertical bar u(x) - u(y)vertical bar(2)/vertical bar x - y vertical bar(N+2s)dxdy) (-Delta)(s)u =lambda f(x)u(-gamma) + g(x)u(2s)*(-1) in Omega, u > 0 in Omega, u = 0 in R-N\Omega, where Omega subset of R-N is an open bounded domain, dimension N > 2s with s is an element of(0, 1), 2(s)* = 2N/(N - 2s) is the fractional critical Sobolev exponent, parameter lambda > 0, exponent gamma is an element of(0, 1), M models a Kirchhoff coefficient, f is an element of L-2s*(/2s)*(+gamma-1) (Omega) is a positive weight, while g is an element of L-infinity(Omega) is a sign-changing function. Using the idea of Nehari manifold technique, we prove the existence of at least two positive solutions for a sufficiently small choice of lambda. This approach allows us to avoid any restriction on the boundary of Omega. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6 / 32
页数:27
相关论文
共 50 条