High-Altitude Divert Architecture for Future Robotic and Human Mars Missions

被引:3
|
作者
Mandalia, Amit B. [1 ]
Braun, Robert D. [2 ]
机构
[1] Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Space Technol, Atlanta, GA 30332 USA
关键词
CONTROL-SYSTEM; ENTRY; DESCENT; PERFORMANCE; GUIDANCE;
D O I
10.2514/1.A33120
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Future robotic and human missions to Mars require improved landed precision and increased payload mass. Low ballistic coefficient entry vehicles decelerate high in the thin Mars atmosphere and may be used to deliver higher-mass payloads to the surface. A high-altitude supersonic propulsive divert maneuver is proposed as a means of precision landing for low ballistic coefficient entry vehicles that decelerate to supersonic speeds at altitudes of 20-60km. This divert maneuver compares favorably to traditional precision landing architectures with up to 100% improvement in range capability while saving over 30% in propellant mass. Through Monte Carlo simulations, it was found that architectures that use hypersonic vehicles with ballistic coefficients of 10kg/m2 can potentially land within 500m of a target with this maneuver alone. This high-altitude divert range capability is sensitive to altitude and flight-path angle variations at maneuver initiation, and it is relatively insensitive to velocity at initiation. The propellant mass fraction is relatively invariant to the initial conditions and correlates directly with the divert distance.
引用
收藏
页码:1311 / 1319
页数:9
相关论文
共 50 条
  • [1] Smart Divert: A New Mars Robotic Entry, Descent, and Landing Architecture
    Grant, Michael J.
    Steinfeldt, Bradley A.
    Braun, Robert D.
    Barton, Gregg H.
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 2010, 47 (03) : 385 - 393
  • [2] Cryocoolers for human and robotic missions to Mars
    Kittel, P
    Salerno, LJ
    Plachta, DW
    [J]. CRYOCOOLERS 10, 1999, : 815 - 821
  • [3] Robotic precursors to human Mars missions
    Connolly, JF
    [J]. SPACE 98, 1998, : 555 - 562
  • [4] The future of human missions to Mars
    Anfimov, NA
    Lukjashchenko, VI
    Suvorov, VV
    [J]. BEYOND THE INTERNATIONAL SPACE STATION: THE FUTURE OF HUMAN SPACEFLIGHT, 2002, 7 : 271 - 272
  • [5] From high-altitude balloons to Moon missions
    James Mitchell Crow
    [J]. Nature, 2020, 585 (7825) : 474 - 474
  • [6] Systems Engineering Methodology for High-Altitude Balloon Missions
    Cordero, Sophia Karolina Salas
    Arroyo, Ignacio Hernandez
    Fortin, Clement
    [J]. 2018 4TH IEEE INTERNATIONAL SYMPOSIUM ON SYSTEMS ENGINEERING (ISSE), 2018,
  • [7] Moon and Mars robotic missions - Path to human presence?
    OHandley, DA
    Arno, R
    [J]. STRENGTHENING COOPERATION IN THE 21ST CENTURY, 1996, 91 : 693 - 698
  • [8] Supersonic Inflatable Aerodynamic Decelerators for Use on Future Robotic Missions to Mars
    Clark, Ian G.
    Hutchings, Allison L.
    Tanner, Christopher L.
    Braun, Robert D.
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 2009, 46 (02) : 340 - 352
  • [9] Supersonic Inflatable Aerodynamic Decelerators For Use on Future Robotic Missions to Mars
    Clark, Ian G.
    Hutchings, Allison L.
    Tanner, Christopher L.
    Braun, Robert D.
    [J]. 2008 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2008, : 562 - +
  • [10] High-Altitude Closed Magnetic Loops at Mars Observed by MAVEN
    Xu, Shaosui
    Mitchell, David
    Luhmann, Janet
    Ma, Yingjuan
    Fang, Xiaohua
    Harada, Yuki
    Hara, Takuya
    Brain, David
    Weber, Tristan
    Mazelle, Christian
    DiBraccio, Gina A.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (22) : 11229 - 11238