Interactive gene clustering - A case study of breast cancer microarray data

被引:21
|
作者
Gruzdz, A [1 ]
Ihnatowicz, A [1 ]
Slezak, D [1 ]
机构
[1] Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
DNA microarrays; breast cancer; self-organizing maps; missing values; entropy;
D O I
10.1007/s10796-005-6100-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new approach to clustering and visualization of the DNA microarray gene expression data. We utilize the self-organizing map (SOM) framework for handling (dis)similarities between genes in terms of their expression characteristics. We rely on appropriately defined distances between ranked genes-attributes, also capable of handling missing values. As a case study, we consider breast cancer data and the gene ESR1, whose expression alterations, appearing for many of the tumor subtypes, have been already observed to be correlated with some other significant genes. Preliminary results positively verify applicability of our approach, although further development is definitely needed. They suggest that it may be very effective when used by the domain experts. The algorithmic toolkit is enriched with GUI enabling the users to interactively support the SOM optimization process. Its effectiveness is achieved by drag&drop techniques allowing for the cluster modification according to the expert knowledge or intuition.
引用
收藏
页码:21 / 27
页数:7
相关论文
共 50 条
  • [1] Interactive Gene Clustering—A Case Study of Breast Cancer Microarray Data
    Alicja Gruźdź
    Aleksandra Ihnatowicz
    Dominik Ślʁzak
    [J]. Information Systems Frontiers, 2006, 8 : 21 - 27
  • [2] Beyond Gene Clustering of Microarray Data
    Zheng, W. Jim
    Mao, Linyong
    Moussa, Omar
    Yordy, John S.
    Wang, Suiquan
    Kraft, Andrew S.
    Watson, Dennis K.
    [J]. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2009, 45 : S3 - S3
  • [3] The Application of Bi-clustering and Bayesian Network for Gene Sets Network Construction in Breast Cancer Microarray Data
    Sohrabi, Ahmad
    Saraygord-Afshari, Neda
    Roudbari, Masoud
    [J]. MIDDLE EAST JOURNAL OF CANCER, 2022, 13 (04) : 624 - 640
  • [4] Network constrained clustering for gene microarray data
    Zhu, DX
    Hero, AO
    Cheng, H
    Khanna, R
    Swaroop, A
    [J]. BIOINFORMATICS, 2005, 21 (21) : 4014 - 4020
  • [5] Network constrained clustering for gene microarray data
    Zhu, DX
    Hero, AO
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 765 - 768
  • [6] Clustering methods for microarray gene expression data
    Belacel, Nabil
    Wang, Qian
    Cuperlovic-Culf, Miroslava
    [J]. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2006, 10 (04) : 507 - 531
  • [7] Classification of breast cancer using microarray gene expression data: A survey
    Abd-Elnaby, Muhammed
    Alfonse, Marco
    Roushdy, Mohamed
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 117
  • [8] Gene Screening and Clustering of Yeast Microarray Gene Expression Data
    Lee, Kyunga
    Kim, Taehoun
    Kim, Jaehee
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (06) : 1077 - 1094
  • [9] Performance analysis of clustering techniques over microarray data: A case study
    Dash, Rasmita
    Misra, Bijan Bihari
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 493 : 162 - 176
  • [10] Interactive learning for classifying microarray gene expression data
    Lu, Yijuan
    Tian, Qi
    Sanchez, Maribel
    Wang, Yufeng
    [J]. 2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS, 2006, : 103 - +