On the Maximum Principle for Solutions of Second Order Elliptic Equations

被引:0
|
作者
Zaitsev, A. B. [1 ]
机构
[1] Russian Technol Univ MIREA, 78 Vernadsky Ave, Moscow 119454, Russia
关键词
elliptic equation; maximum principle; quasiconformality coefficient;
D O I
10.3103/S1066369X20080022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we found sufficient conditions, under fulfillment of which the maximum principle for the solution of a second order partial differential elliptic equation in the unit circle meets maximum principle. It is proved that if a quasiconformality coefficient of such function satisfies certain boundary conditions, then this function meets maximum principle. While proving the main result, we use integral representations of solutions of this equation and properties of the Cauchy type integral and functions of Hardy and Smirnoff classes.
引用
收藏
页码:8 / 13
页数:6
相关论文
共 50 条