共 50 条
Positive Allosteric Modulation as a Potential Therapeutic Strategy in Anti-NMDA Receptor Encephalitis
被引:37
|作者:
Warikoo, Natasha
[1
]
Brunwasser, Samuel J.
[1
,5
]
Benz, Ann
[1
]
Shu, Hong-Jin
[1
]
Paul, Steven M.
[1
,4
,6
,7
]
Lewis, Michael
[6
]
Doherty, James
[6
]
Quirk, Michael
[6
]
Piccio, Laura
[2
]
Zorumski, Charles F.
[1
,3
,4
]
Day, Gregory S.
[2
,8
]
Mennerick, Steven
[1
,3
,4
]
机构:
[1] Washington Univ, Sch Med, Dept Psychiat, 660 South Euclid Ave,Campus Box 8134, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Neurosci, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Taylor Family Inst Innovat Psychiat Res, St Louis, MO 63110 USA
[5] Washington Univ, Sch Med, Med Scientist Training Program, St Louis, MO 63110 USA
[6] Sage Therapeut, Cambridge, MA 02142 USA
[7] Voyager Therapeut, Cambridge, MA 02139 USA
[8] Washington Univ, Sch Med, Knight Alzheimer Dis Res Ctr, St Louis, MO 63108 USA
来源:
关键词:
autoimmune;
glutamate;
NMDA receptor;
schizophrenia;
LONG-TERM POTENTIATION;
D-ASPARTATE RECEPTORS;
OPEN PROBABILITY;
SCHIZOPHRENIA;
GLUTAMATE;
MECHANISMS;
CHANNEL;
SYNAPSES;
24(S)-HYDROXYCHOLESTEROL;
PATHOPHYSIOLOGY;
D O I:
10.1523/JNEUROSCI.3377-17.2018
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors important for synaptic plasticity, memory, and neuropsychiatric health. NMDAR hypofunction contributes to multiple disorders, including anti-NMDAR encephalitis (NMDARE), an autoimmune disease of the CNS associated with GluN1 antibody-mediated NMDAR internalization. Here we characterize the functional/pharmacological consequences of exposure to CSF from female human NMDARE patients on NMDAR function, and we characterize the effects of intervention with recently described positive allosteric modulators (PAMs) of NMDARs. Incubation (48 h) of rat hippocampal neurons of both sexes in confirmed NMDARE patient CSF, but not control CSF, attenuated NMDA-induced current. Residual NMDAR function was characterized by lack of change in channel open probability, indiscriminate loss of synaptic and extrasynaptic NMDARs, and indiscriminate loss of GluN2B-containing and GluN2B-lacking NMDARs. NMDARs tagged with N-terminal pHluorin fluorescence demonstrated loss of surface receptors. Thus, function of residual NMDARs following CSF exposure was indistinguishable from baseline, and deficits appear wholly accounted for by receptor loss. Coapplication of CSF and PAMs of NMDARs (SGE-301 or SGE-550, oxysterolmimetic) for 24 h restored NMDAR function following 24 h incubation in patient CSF. Curiously, restoration of NMDAR function was observed despite washout of PAMs before electrophysiological recordings. Subsequent experiments suggested that residual allosteric potentiation ofNMDARfunction explained the persistent rescue. Further studies of the pathogenesis of NMDARE and intervention with PAMs may inform new treatments for NMDARE and other disorders associated with NMDAR hypofunction.
引用
收藏
页码:3218 / 3229
页数:12
相关论文