Rao-Blackwellized particle filtering with Gaussian mixture models for robust visual tracking

被引:10
|
作者
Kim, Jungho [1 ]
Lin, Zhe [2 ]
Kweon, In So [3 ]
机构
[1] KETI, Multimedia IP Res Ctr, Songnam, South Korea
[2] Adobe, Adv Technol Labs, San Jose, CA 95110 USA
[3] Korea Adv Inst Sci & Technol, Robot & Comp Vis Lab, Taejon 305701, South Korea
关键词
Visual tracking; Rao-Blackwellized particle filtering; Gaussian mixture model; Expectation-Maximization; GRADIENTS;
D O I
10.1016/j.cviu.2014.04.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we formulate an adaptive Rao-Blackwellized particle filtering method with Gaussian mixture models to cope with significant variations of the target appearance during object tracking. By modeling target appearance as Gaussian mixture models, we introduce an efficient method for computing particle weights. We incrementally update the appearance models using an on-line Expectation Maximization algorithm. To achieve robustness to outliers caused by tracking error or partial occlusion in updating the appearance models, we divide the target area into sub-regions and estimate the appearance models independently for each of those sub-regions. We demonstrate the robustness of the proposed method for object tracking using a number of publicly available datasets. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:128 / 137
页数:10
相关论文
共 50 条
  • [1] RAO-BLACKWELLIZED PARTICLE FILTER FOR GAUSSIAN MIXTURE MODELS AND APPLICATION TO VISUAL TRACKING
    Kim, Jungho
    Kweon, In So
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1173 - 1176
  • [2] Rao-Blackwellized Gaussian Sum Particle Filtering for Multipath Assisted Positioning
    Ulmschneider, Markus
    Gentner, Christian
    Jost, Thomas
    Dammann, Armin
    [J]. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2018, 2018
  • [3] Rao-Blackwellized Particle Smoothers for Conditionally Linear Gaussian Models
    Lindsten, Fredrik
    Bunch, Pete
    Sarkka, Simo
    Schon, Thomas B.
    Godsill, Simon J.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (02) : 353 - 365
  • [4] A Kalman Estimation Based Rao-Blackwellized Particle Filtering for Radar Tracking
    Liu, Jingxian
    Wang, Zulin
    Xu, Mai
    [J]. IEEE ACCESS, 2017, 5 : 8162 - 8174
  • [5] VISUAL TRACKING OF MULTIPLE INTERACTING OBJECTS THROUGH RAO-BLACKWELLIZED DATA ASSOCIATION PARTICLE FILTERING
    del Blanco, Carlos R.
    Jaureguizar, Fernando
    Garcia, Narciso
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 821 - 824
  • [6] Rao-blackwellized marginal particle filtering for multiple object tracking in molecular Bioimaging
    Smal, Ihor
    Draegestein, Katharina
    Galjart, Niels
    Niessen, Wiro
    Meijering, Erik
    [J]. INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2007, 4584 : 110 - +
  • [7] Multiple object tracking in molecular bioimaging by Rao-Blackwellized marginal particle filtering
    Smal, I.
    Meijering, E.
    Draegestein, K.
    Galjart, N.
    Grigoriev, I.
    Akhmanova, A.
    van Royen, M. E.
    Houtsmuller, A. B.
    Niessen, W.
    [J]. MEDICAL IMAGE ANALYSIS, 2008, 12 (06) : 764 - 777
  • [8] Rao-blackwellized particle filtering for mapping dynamic environments
    Miller, Isaac
    Campbell, Mark
    [J]. PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, : 3862 - +
  • [9] Rao-Blackwellized Gaussian Smoothing
    Hostettler, Roland
    Sarkka, Simo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (01) : 305 - 312
  • [10] Rao-Blackwellized particle filtering for sequential speech enhancement
    Park, Sunho
    Choi, Seungjin
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1254 - +