Computational adaptive optics for broadband optical interferometric tomography of biological tissue

被引:149
|
作者
Adie, Steven G. [1 ,2 ]
Graf, Benedikt W. [1 ,2 ]
Ahmad, Adeel [1 ,2 ]
Carney, P. Scott [1 ,2 ]
Boppart, Stephen A. [1 ,2 ,3 ,4 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Internal Med, Urbana, IL 61801 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
low-coherence tomography; three-dimensional microscopy; aberration compensation; holography; inverse scattering; SYNTHETIC-APERTURE MICROSCOPY; DIGITAL HOLOGRAPHIC MICROSCOPY; COHERENCE TOMOGRAPHY; 2-PHOTON MICROSCOPY; CHROMATIC ABERRATIONS; PHASE; COMPENSATION; SCATTERING; BIOPSY;
D O I
10.1073/pnas.1121193109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard Gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.
引用
收藏
页码:7175 / 7180
页数:6
相关论文
共 50 条
  • [1] Computational adaptive optics for broadband optical interferometric tomography of biological tissue
    Boppart, Stephen A.
    [J]. ADAPTIVE OPTICS AND WAVEFRONT CONTROL FOR BIOLOGICAL SYSTEMS, 2015, 9335
  • [2] Computational adaptive optics for broadband interferometric tomography of tissues and cells
    Adie, Steven G.
    Mulligan, Jeffrey A.
    [J]. ADAPTIVE OPTICS AND WAVEFRONT CONTROL FOR BIOLOGICAL SYSTEMS II, 2016, 9717
  • [3] Guide-star-based computational adaptive optics for broadband interferometric tomography
    Adie, Steven G.
    Shemonski, Nathan D.
    Graf, Benedikt W.
    Ahmad, Adeel
    Carney, P. Scott
    Boppart, Stephen A.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (22)
  • [4] Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography
    Xu, Yang
    Liu, Yuan-Zhi
    Boppart, Stephen A.
    Carney, P. Scott
    [J]. APPLIED OPTICS, 2016, 55 (08) : 2034 - 2041
  • [5] Computational adaptive optics for polarization-sensitive optical coherence tomography
    Wang, Jianfeng
    Chaney, Eric J.
    Aksamitiene, Edita
    Marjanovic, Marina
    Boppart, Stephen A.
    [J]. OPTICS LETTERS, 2021, 46 (09) : 2071 - 2074
  • [6] Computational adaptive optics for optical coherence tomography using multiple randomized subaperture correlations
    Hillmann, Dierck
    Pfaeffle, Clara
    Spahr, Hendrik
    Burhan, Sazan
    Kutzner, Lisa
    Hilge, Felix
    Huettmann, Gereon
    [J]. OPTICS LETTERS, 2019, 44 (15) : 3905 - 3908
  • [7] Adaptive optics optical coherence tomography in glaucoma
    Dong, Zachary M.
    Wollstein, Gadi
    Wang, Bo
    Schuman, Joel S.
    [J]. PROGRESS IN RETINAL AND EYE RESEARCH, 2017, 57 : 76 - 88
  • [8] Adaptive optics optical coherence tomography for retina imaging
    史国华
    戴云
    王玲
    丁志华
    饶学军
    张雨东
    [J]. Chinese Optics Letters, 2008, (06) : 424 - 425
  • [9] Adaptive Optics Optical Coherence Tomography in clinical settings
    Pircher, Michael
    Reumueller, Adrian
    Salas, Matthias
    Wassermann, Lorenz
    Hafner, Julia
    Schmidt-Erfurth, Ursula
    Drexler, Wolfgang
    Pollreisz, Andreas
    [J]. OPTICAL COHERENCE IMAGING TECHNIQUES AND IMAGING IN SCATTERING MEDIA III, 2019, 11078
  • [10] Adaptive optics optical coherence tomography at 1 MHz
    Kocaoglu, Omer P.
    Turner, Timothy L.
    Liu, Zhuolin
    Miller, Donald T.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2014, 5 (12): : 4186 - 4200