Moment Determinacy of Powers and Products of Nonnegative Random Variables

被引:11
|
作者
Lin, Gwo Dong [1 ]
Stoyanov, Jordan [2 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
Stieltjes moment problem; Powers; Products; Hardy's condition; Generalized gamma distribution; Half-logistic distribution; CUBE;
D O I
10.1007/s10959-014-0546-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We find conditions which guarantee moment (in)determinacy of powers and products of nonnegative random variables. We establish new and general results which are based either on the rate of growth of the moments of a random variable or on conditions about the distribution itself. For the class of generalized gamma random variables, we show that the power and the product of such variables share the same moment determinacy property. A similar statement holds for half-logistic random variables. Besides answering new questions in this area, we either extend some previously known results or provide new and transparent proofs of existing results.
引用
收藏
页码:1337 / 1353
页数:17
相关论文
共 50 条
  • [1] Moment Determinacy of Powers and Products of Nonnegative Random Variables
    Gwo Dong Lin
    Jordan Stoyanov
    [J]. Journal of Theoretical Probability, 2015, 28 : 1337 - 1353
  • [2] Hamburger moment problem for powers and products of random variables
    Stoyanov, Jordan
    Lin, Gwo Dong
    DasGupta, Anirban
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 154 : 166 - 177
  • [3] ON THE MOMENT DETERMINACY OF PRODUCTS OF NON-IDENTICALLY DISTRIBUTED RANDOM VARIABLES
    Lin, Gwo Dong
    Stoyanov, Jordan
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2016, 36 (01): : 21 - 33
  • [4] MOMENT INEQUALITIES FOR NONNEGATIVE RANDOM VARIABLES
    Castaneda-Leyva, Netzahualcoyotl
    Rodriguez-Narciso, Silvia
    Hernandez-Quintero, Angelica
    Perez, Aroldo
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2023, 43 (01): : 41 - 61
  • [5] PROPHET INEQUALITIES FOR PRODUCTS OF NONNEGATIVE RANDOM-VARIABLES
    JONES, ML
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 1994, 12 (02) : 205 - 223
  • [6] LIN'S CONDITION FOR FUNCTIONS OF RANDOM VARIABLES AND MOMENT DETERMINACY OF PROBABILITY DISTRIBUTIONS
    Kopanov, Petar
    Stoyanov, Jordan
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2017, 70 (05): : 611 - 618
  • [7] Moment Inequality of the Minimum for Nonnegative Negatively Orthant Dependent Random Variables
    Wang, Xuejun
    Wang, Shijie
    Hu, Shuhe
    [J]. FILOMAT, 2014, 28 (07) : 1475 - 1481
  • [8] OPTIMAL MOMENT INEQUALITIES FOR ORDER STATISTICS FROM NONNEGATIVE RANDOM VARIABLES
    Papadatos, Nickos
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2021, 35 (02) : 316 - 330
  • [9] PRODUCTS OF POWERS OF NONNEGATIVE DERIVATIVES
    MARIK, J
    WEIL, CE
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 276 (01) : 361 - 373
  • [10] Moment inequalities for sums of products of independent random variables
    Yang Shanchao
    [J]. STATISTICS & PROBABILITY LETTERS, 2006, 76 (18) : 1994 - 2000