Exploiting Qualitative Domain Knowledge for Learning Bayesian Network Parameters with Incomplete Data

被引:0
|
作者
Liao, Wenhui
Ji, Qiang
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When a large amount of data are missing, or when multiple hidden nodes exist, learning parameters in Bayesian networks (BNs) becomes extremely difficult. This paper presents a learning algorithm to incorporate qualitative domain knowledge to regularize the otherwise ill-posed problem, limit the search space, and avoid local optima. Specifically, the problem is formulated as a constrained optimization problem, where an objective function is defined as a combination of the likelihood function and penalty functions constructed from the qualitative domain knowledge. Then, a gradient-descent procedure is systematically integrated with the E-step and M-step of the EM algorithm, to estimate the parameters iteratively until it canverges. The experiments show our algorithm improves the accuracy of the learned BN parameters significantly over the conventional EM algorithm.
引用
收藏
页码:543 / 546
页数:4
相关论文
共 50 条
  • [1] Learning Bayesian network parameters under incomplete data with domain knowledge
    Liao, Wenhui
    Ji, Qiang
    [J]. PATTERN RECOGNITION, 2009, 42 (11) : 3046 - 3056
  • [2] Online learning of Bayesian network parameters with incomplete data
    Lim, Sungsoo
    Cho, Sung-Bae
    [J]. COMPUTATIONAL INTELLIGENCE, PT 2, PROCEEDINGS, 2006, 4114 : 309 - 314
  • [3] Learning from incomplete data in Bayesian networks with qualitative influences
    Masegosa, Andres R.
    Feelders, Ad J.
    van der Gaag, Linda C.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2016, 69 : 18 - 34
  • [4] Learning Bayesian network equivalence classes from incomplete data
    Borchani, Hanen
    Ben Amor, Nahla
    Mellouli, Khaled
    [J]. DISCOVERY SCIENCE, PROCEEDINGS, 2006, 4265 : 291 - 295
  • [5] Study of the Case of Learning Bayesian Network from Incomplete Data
    Cao Yonghui
    [J]. 2009 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT, INNOVATION MANAGEMENT AND INDUSTRIAL ENGINEERING, VOL 4, PROCEEDINGS, 2009, : 66 - 69
  • [6] LEARNING BAYESIAN NETWORK PARAMETERS FROM SOFT DATA
    Xiao, Xu Hong
    Lee, Hian Beng
    Ng, Gee Wah
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2009, 17 (02) : 281 - 294
  • [7] Hard and Soft EM in Bayesian Network Learning from Incomplete Data
    Ruggieri, Andrea
    Stranieri, Francesco
    Stella, Fabio
    Scutari, Marco
    [J]. ALGORITHMS, 2020, 13 (12)
  • [8] The threshold EM algorithm for parameter learning in bayesian network with incomplete data
    Ben Lamine, Fradj
    Kalti, Karim
    Mahjoub, Mohamed Ali
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2011, 2 (07) : 86 - 91
  • [9] Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data
    Van den Broeck, Guy
    Mohan, Karthika
    Choi, Arthur
    Darwiche, Adnan
    Pearl, Judea
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2015, : 161 - 170
  • [10] Learning and evaluating Bayesian network equivalence classes from incomplete data
    Borchani, Hanen
    Ben Amor, Nahla
    Khalfallah, Fedia
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2008, 22 (02) : 253 - 278