Pedestrian Dead Reckoning with Attitude Estimation using a Fuzzy Logic Tuned Adaptive Kalman Filter

被引:0
|
作者
Ibarra-Bonilla, Mariana N. [1 ]
Jorge Escamilla-Ambrosio, P. [1 ]
Manuel Ramirez-Cortes, J. [1 ]
Vianchada, Carlos [1 ]
机构
[1] INAOE, Dept Elect, Tonantzintla, Puebla, Mexico
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a fuzzy logic-based pedestrian dead reckoning system relying on information derived from an inertial measurement unit (IMU) and a triaxial gyroscope. Attitude estimation is performed using a fuzzy logic tuned adaptive Kalman filter on the information fusion process. Adaptive tuning of the covariance matrices corresponding to the process and measurement noise, is carried out using a fuzzy inference system on the filter innovation sequence through a covariance-matching technique. Pedestrian walk estimation is also performed through a fuzzy logic approach which characterizes frequency and length step. Preliminary results showed an accumulate error around 6.4 % in average.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering
    Wu, Dongjin
    Xia, Linyuan
    Geng, Jijun
    [J]. SENSORS, 2018, 18 (06)
  • [2] Adaptive tuning of a Kalman filter using Fuzzy logic for attitude reference system
    Kim, Taerim
    Do, Joocheol
    Jung, Eunkook
    Baek, Gyeongdong
    Kim, Sungshin
    [J]. PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), 2011, : 310 - 313
  • [3] Indoor pedestrian dead reckoning algorithm based on rank Kalman filter
    Yu, Zhipeng
    Xiong, Jian
    Zhong, Weisheng
    Guo, Hang
    Zhong, Qilin
    [J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2020, 41 (05): : 214 - 220
  • [4] The Extended Kalman Filter With Reduced Computation Time for Pedestrian Dead Reckoning
    Yamagishi, Shunsei
    Jing, Lei
    [J]. IEEE SENSORS LETTERS, 2023, 7 (12)
  • [5] Pedestrian Dead Reckoning Using Adaptive Particle Filter to Human Moving Mode
    Akiyama, Takayuki
    Ohashi, Hiroki
    Sato, Akiko
    Nakahara, Goh
    Yamasaki, Katsuya
    [J]. 2013 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2013,
  • [6] Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System
    Fan, Qigao
    Zhang, Hai
    Pan, Peng
    Zhuang, Xiangpeng
    Jia, Jie
    Zhang, Pengsong
    Zhao, Zhengqing
    Zhu, Gaowen
    Tang, Yuanyuan
    [J]. SENSORS, 2019, 19 (02):
  • [7] Estimation of Attitude Using Robust Adaptive Kalman Filter
    Candan, Batu
    Soken, H. Ersin
    [J]. 2021 IEEE 8TH INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (IEEE METROAEROSPACE), 2021, : 159 - 163
  • [8] Attitude estimation using a Neuro-Fuzzy tuning based adaptive Kalman filter
    Ibarra-Bonilla, Mariana N.
    Jorge Escamilla-Ambrosio, P.
    Manuel Ramirez-Cortes, Juan
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (02) : 479 - 488
  • [9] Height Estimation Scheme of Low-Cost Pedestrian Dead-Reckoning System using Kalman Filter and Walk Condition Estimation Algorithm
    Kim, Yunki
    Hwang, Yoseop
    Choi, Seunghwan
    Lee, Jangmyung
    [J]. 2013 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM): MECHATRONICS FOR HUMAN WELLBEING, 2013, : 1492 - 1497
  • [10] Robust attitude estimation using an adaptive unscented Kalman filter
    Chiella, Antonio C. B.
    Teixeira, Bruno O. S.
    Pereira, Guilherme A. S.
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 7748 - 7754