Classification of operator extensions, monad liftings and distributive laws for differential algebras and Rota-Baxter algebras

被引:1
|
作者
Zhang, Shilong [1 ,2 ]
Guo, Li [3 ]
Keigher, William [3 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shaanxi, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Gansu, Peoples R China
[3] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
基金
中国国家自然科学基金;
关键词
Rota-Baxter algebra; differential algebra; cover of operators; extension of operators; monad; distributive law; RENORMALIZATION;
D O I
10.1142/S0219498820501728
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalizing the algebraic formulation of the First Fundamental Theorem of Calculus (FFTC), a class of constraints involving a pair of operators was considered in [Extensions of operators, liftings of monads, and mixed distributive laws, Appl. Categ. Struct. 26 (2018) 747-765]. For a given constraint, the existences of extensions of differential and Rota-Baxter operators, of liftings of monads and comonads, and of mixed distributive laws are shown to be equivalent. In this paper, we give a classification of the constraints satisfying these equivalent conditions.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Monads and distributive laws for Rota-Baxter and differential algebras
    Zhang, Shilong
    Guo, Li
    Keigher, William
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2016, 72 : 139 - 165
  • [2] On differential Rota-Baxter algebras
    Guo, Li
    Keigher, William
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (03) : 522 - 540
  • [3] Rota-Baxter algebras and dendriform algebras
    Ebrahimi-Fard, Kurusch
    Guo, Li
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (02) : 320 - 339
  • [4] Localization of Rota-Baxter algebras
    Chu, Chenghao
    Guo, Li
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (02) : 237 - 251
  • [5] Embedding of dendriform algebras into Rota-Baxter algebras
    Gubarev, Vsevolod Yu.
    Kolesnikov, Pavel S.
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (02): : 226 - 245
  • [6] FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS
    Zhang, Xigou
    Gao, Xing
    Guo, Li
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 25 : 12 - 34
  • [7] Free Lie Rota-Baxter algebras
    Gubarev, V. Yu.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (05) : 809 - 818
  • [8] Representations of polynomial Rota-Baxter algebras
    Qiao, Li
    Pei, Jun
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (07) : 1738 - 1757
  • [9] The L∞-deformations of associative Rota-Baxter algebras and homotopy Rota-Baxter operators
    Das, Apurba
    Mishra, Satyendra Kumar
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (05)
  • [10] ROTA-BAXTER OPERATORS ON UNITAL ALGEBRAS
    Gubarev, V
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2021, 21 (02) : 325 - 364