Vegetation Index to estimate chlorophyll content from multispectral remote sensing data

被引:30
|
作者
Carmona, Facundo [1 ,2 ]
Rivas, Raul [1 ,3 ]
Fonnegra, Diana C. [4 ]
机构
[1] Univ Nacl Ctr Prov Buenos Aires, Inst Hidrol Llanuras, Tandil, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Cordoba, Argentina
[3] CIC, Cordoba, Argentina
[4] Comis Actividades Espaciales CONAE, Inst Altos Estudios Espaciales Mario Gulich, Cordoba, Argentina
关键词
Chlorophyll; remote sensing; Vegetation Index; NAOC index; leaf reflectance; REFLECTANCE; LEAF; RETRIEVAL; AREA;
D O I
10.5721/EuJRS20154818
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Normalized Area Vegetation Index (NAVI) is proposed for estimating chlorophyll content (Chl) from remote sensing data. NAVI is obtained using only two bands on red and near infrared regions of the spectrum. It is derived from the hyperspectral NAOC index, which was initially developed for the Chl mapping. For determining the relationship between NAOC and NAVI we used 257 spectra obtained with the Proba/CHRIS sensor during the SPARC-2003/2004 campaigns in Barrax, Spain. NAVI was estimated with different pairs of bands and a correlation matrix with NAOC index was obtained. Results show very good linear correlation coefficients, with values >= 0.97. NAVI allows to estimate leaf Chl from satellite data with medium spectral resolution.
引用
收藏
页码:319 / 326
页数:8
相关论文
共 50 条
  • [1] Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 - Theoretical approach
    Ceccato, P
    Gobron, N
    Flasse, S
    Pinty, B
    Tarantola, S
    [J]. REMOTE SENSING OF ENVIRONMENT, 2002, 82 (2-3) : 188 - 197
  • [2] Retrieval Of canopy Chlorophyll Content For Spring Corn Using Multispectral Remote Sensing Data
    Xu Jin
    Meng Jihua
    [J]. THIRD INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS 2014), 2014, : 508 - 512
  • [3] MTCARI: A Kind of Vegetation Index Monitoring Vegetation Leaf Chlorophyll Content Based on Hyperspectral Remote Sensing
    Meng Qing-ye
    Dong Heng
    Qin Qi-ming
    Wang Jin-liang
    Zhao Jiang-hua
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32 (08) : 2218 - 2222
  • [4] Designing a spectral index to estimate vegetation water content from remote sensing data -: Part 2.: Validation and applications
    Ceccato, P
    Flasse, S
    Grégoire, JM
    [J]. REMOTE SENSING OF ENVIRONMENT, 2002, 82 (2-3) : 198 - 207
  • [5] Monitoring of Vegetation Drought Index in Laibin City Based on Landsat Multispectral Remote Sensing Data
    Fan, Xiangsuo
    Zhang, Yan
    Chen, Lin
    Li, Peng
    Li, Qi
    Zhao, Xueqiang
    [J]. Applied Sciences (Switzerland), 2024, 14 (19):
  • [6] Estimating canopy water content of wetland vegetation using hyperspectral and multispectral remote sensing data
    Sun, Yonghua
    Wang, Yihan
    Huang, Jin
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII, 2015, 9637
  • [7] Radar and multispectral remote sensing data accurately estimate vegetation vertical structure diversity as a fire resilience indicator
    Fernandez-Guisuraga, Jose Manuel
    Suarez-Seoane, Susana
    Calvo, Leonor
    [J]. REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2023, 9 (01) : 117 - 132
  • [8] Evaluating leaf chlorophyll content prediction from multispectral remote sensing data within a physically-based modelling framework
    Croft, H.
    Chen, J. M.
    Zhang, Y.
    Simic, A.
    Noland, T. L.
    Nesbitt, N.
    Arabian, J.
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 102 : 85 - 95
  • [9] An Effective Method for Canopy Chlorophyll Content Estimation of Marsh Vegetation Based on Multiscale Remote Sensing Data
    Lou, Peiqing
    Fu, Bolin
    He, Hongchang
    Chen, Jianjun
    Wu, Tonghua
    Lin, Xingchen
    Liu, Lilong
    Fan, Donglin
    Deng, Tengfang
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5311 - 5325
  • [10] Suppression of vegetation in multispectral remote sensing images
    Yu, Le
    Porwal, Alok
    Holden, Eun-Jung
    Dentith, Michael Charles
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (22) : 7343 - 7357