A study of variational inequalities for set-valued mappings

被引:1
|
作者
Tan, KK
Tarafdar, E
Yuan, GXZ [1 ]
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] Dalhousie Univ, Dept Math Stat & Comp Sci, Halifax, NS B3H 3J5, Canada
关键词
monotone pair; simultaneous variational inequality; KKM mapping principle; Fan-Glicksberg fixed point theorem; implicit quasi-variational inequality;
D O I
10.1155/S1025583499000120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, Ky Fan's KKM mapping principle is used to establish the existence of solutions for simultaneous variational inequalities. By applying our earlier results together with Fan-Glicksberg fixed point theorem, we prove some existence results for implicit variational inequalities and implicit quasi-variational inequalities for set-valued mappings which are either monotone or upper semi-continuous.
引用
收藏
页码:161 / 181
页数:21
相关论文
共 50 条
  • [1] WEIGHTED VARIATIONAL INEQUALITIES WITH SET-VALUED MAPPINGS
    Beldiman, Miruna
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (03): : 315 - 327
  • [2] On generalized vector variational inequalities with set-valued mappings
    Kim, JK
    Nam, YA
    Huang, NJ
    Dong, H
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 (02): : 221 - 230
  • [3] Vector variational-type inequalities for set-valued mappings
    Lee, BS
    Lee, SJ
    [J]. APPLIED MATHEMATICS LETTERS, 2000, 13 (03) : 57 - 62
  • [4] Generalized Variational-Like Inequalities with Nonmonotone Set-Valued Mappings
    X. P. Ding
    [J]. Journal of Optimization Theory and Applications, 1997, 95 : 601 - 613
  • [5] Generalized variational-like inequalities with pseudomonotone set-valued mappings
    Ding, XP
    Tarafdar, E
    [J]. ARCHIV DER MATHEMATIK, 2000, 74 (04) : 302 - 313
  • [6] Generalized variational-like inequalities with pseudomonotone set-valued mappings
    Xie Ping Ding
    E. Tarafdar
    [J]. Archiv der Mathematik, 2000, 74 : 302 - 313
  • [7] A System of Generalized Variational-Hemivariational Inequalities with Set-Valued Mappings
    Liu, Zhi-bin
    Gou, Jian-hong
    Xiao, Yi-bin
    Li, Xue-song
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [8] Generalized variational-like inequalities with nonmonotone set-valued mappings
    Ding, XP
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 95 (03) : 601 - 613
  • [9] On the ∈-variational principle for set-valued mappings
    Li, S. J.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (10) : 1627 - 1632
  • [10] Minimax inequalities for set-valued mappings
    Zhang, Y.
    Li, S. J.
    Li, M. H.
    [J]. POSITIVITY, 2012, 16 (04) : 751 - 770