Pattern discovery: A progressive visual analytic design to support categorical data analysis

被引:6
|
作者
Zhao, Hanqing [1 ]
Zhang, Huijun [2 ]
Liu, Yan [1 ]
Zhang, Yongzhen [3 ]
Zhang, Xiaolong [1 ,4 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
[2] Univ Shanxi, Taiyuan Univ Technol & Commun, Taiyuan, Shanxi, Peoples R China
[3] Shanxi Tumor Hosp, Taiyuan, Shanxi, Peoples R China
[4] Taiyuan Univ Technol, Taiyuan, Shanxi, Peoples R China
来源
JOURNAL OF VISUAL LANGUAGES AND COMPUTING | 2017年 / 43卷
基金
中国国家自然科学基金;
关键词
Progressive; Visual analytics; Categorical data analysis; UNCERTAINTY; VISUALIZATION;
D O I
10.1016/j.jvlc.2017.05.004
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
When using data-mining tools to analyze big data, users often need tools to support the understanding of individual data attributes and control the analysis progress. This requires the integration of data-mining algorithms with interactive tools to manipulate data and analytical process. This is where visual analytics can help. More than simple visualization of a dataset or some computation results, visual analytics provides users an environment to iteratively explore different inputs or parameters and see the corresponding results. In this research, we explore a design of progressive visual analytics to support the analysis of categorical data with a data-mining algorithm, Apriori. Our study focuses on executing data mining techniques step-by-step and showing intermediate result at every stage to facilitate sense-making. Our design, called Pattern Discovery Tool, targets for a medical dataset. Starting with visualization of data properties and immediate feedback of users' inputs or adjustments, Pattern Discovery Tool could help users detect interesting patterns and factors effectively and efficiently. Afterward, further analyses such as statistical methods could be conducted to test those possible theories. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 49
页数:8
相关论文
共 50 条
  • [1] Visual Pattern Discovery in Timed Event Data
    Schaefer, Matthias
    Wanner, Franz
    Mansmann, Florian
    Scheible, Christian
    Stennett, Verity
    Hasselrot, Anders T.
    Keim, Daniel A.
    VISUALIZATION AND DATA ANALYSIS 2011, 2011, 7868
  • [2] Parallel sets: Visual analysis of categorical data
    Bendix, F
    Kosara, R
    Hauser, H
    INFOVIS 05: IEEE SYMPOSIUM ON INFORMATION VISUALIZATION, PROCEEDINGS, 2005, : 133 - 140
  • [3] Pattern discovery: A data driven approach to decision support
    Wong, AKC
    Wang, Y
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2003, 33 (01): : 114 - 124
  • [4] CrystalBall: A Visual Analytic System for Future Event Discovery and Analysis from Social Media Data
    Cho, Isaac
    Wesslen, Ryan
    Volkova, Svitlana
    Ribarsky, William
    Dou, Wenwen
    2017 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2017, : 25 - 35
  • [5] Visual pattern discovery in image and video data: a brief survey
    Wang, Hongxing
    Zhao, Gangqiang
    Yuan, Junsong
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2014, 4 (01) : 24 - 37
  • [6] A Collaborative Visual Analysis System for Communication Pattern Discovery
    Xu, Jin
    Ren, Shuilin
    Tao, Yubo
    Lin, Hai
    2015 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY, 2015, : 139 - 140
  • [7] Visual Analysis of Multi-Dimensional Categorical Data Sets
    Broeksema, Bertjan
    Telea, Alexandru C.
    Baudel, Thomas
    COMPUTER GRAPHICS FORUM, 2013, 32 (08) : 158 - 169
  • [8] Visual Correlation Analysis of Numerical and Categorical Data on the Correlation Map
    Zhang, Zhiyuan
    McDonnell, Kevin T.
    Zadok, Erez
    Mueller, Klaus
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2015, 21 (02) : 289 - 303
  • [9] Parallel sets: Interactive exploration and visual analysis of categorical data
    Kosara, R
    Bendix, F
    Hauser, H
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2006, 12 (04) : 558 - 568
  • [10] OPTIMAL-DESIGN FOR THE ANALYSIS OF CATEGORICAL-DATA
    URSIANU, E
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 26 (03): : 539 - 545