Retrograded starches as potential anodes in lithium-ion rechargeable batteries

被引:4
|
作者
Lian Xijun [1 ,2 ,3 ]
Wen Yan [4 ]
Zhu Wei [4 ]
Li Lin [2 ,3 ]
Zhang Kunsheng [1 ]
Wang Wanyu [1 ]
机构
[1] Tian Jin Univ Commerce, Sch Food Sci & Biotechnol, Tian Jin Key Lab Food Biotechnol, Tianjin 300134, Peoples R China
[2] S China Univ Technol, Coll Light Ind & Food Sci, Guangzhou 510640, Guangdong, Peoples R China
[3] Guangdong Prov Key Lab Green Proc Nat Prod & Prod, Guangzhou 510640, Guangdong, Peoples R China
[4] Tian Jin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
关键词
Retrograded potato amylose and amylopectin; Crystal; Rechargeable batteries;
D O I
10.1016/j.ijbiomac.2012.06.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Retrograded starch is a crystal formed by starch molecules with hydrogen bonds. Many literatures have reported its physicochemical character, but its crystal structure is so far unclear. As we isolate amylose and amylopectin from retrograded maize, sweet potato and potato starches in 4.0 M KOH solutions and make them retrograde alone in neutral solution (adjusted by HCl) to form crystal, a new phenomenon appears, crystals of KCl do not appear in retrograded potato amylose, potato amylopectin, and maize amylose, indicating that those crystals may absorb K+ and (or) Cl-, and those ions probably act with aldehyde of starch or hydroxy of fatty acid attached in starch, such characteristic may make retrograded starches replace graphite as anode with high-capacity in lithium-ion rechargeable batteries. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:632 / 634
页数:3
相关论文
共 50 条
  • [1] LITHIUM-ION RECHARGEABLE BATTERIES
    MEGAHED, S
    SCROSATI, B
    [J]. JOURNAL OF POWER SOURCES, 1994, 51 (1-2) : 79 - 104
  • [2] Lithia formation mechanism in tin oxide anodes for lithium-ion rechargeable batteries
    Kim, Young-Jun
    Lee, Hyukjae
    Sohn, Hun-Joon
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (11) : 2125 - 2128
  • [3] Materials for Rechargeable Lithium-Ion Batteries
    Hayner, Cary M.
    Zhao, Xin
    Kung, Harold H.
    [J]. ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 3, 2012, 3 : 445 - 471
  • [4] Nanomaterials for lithium-ion rechargeable batteries
    Liu, HK
    Wang, GX
    Guo, ZP
    Wang, JZ
    Konstantinov, K
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (01) : 1 - 15
  • [5] Characterization of anodes for lithium-ion batteries
    R. M. Humana
    M. G. Ortiz
    J. E. Thomas
    S. G. Real
    M. Sedlarikova
    J. Vondrak
    A. Visintin
    [J]. Journal of Solid State Electrochemistry, 2016, 20 : 1053 - 1058
  • [6] SPINEL ANODES FOR LITHIUM-ION BATTERIES
    FERG, E
    GUMMOW, RJ
    DEKOCK, A
    THACKERAY, MM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) : L147 - L150
  • [7] Characterization of anodes for lithium-ion batteries
    Humana, R. M.
    Ortiz, M. G.
    Thomas, J. E.
    Real, S. G.
    Sedlarikova, M.
    Vondrak, J.
    Visintin, A.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (04) : 1053 - 1058
  • [8] Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries
    Teki, Ranganath
    Datta, Moni K.
    Krishnan, Rahul
    Parker, Thomas C.
    Lu, Toh-Ming
    Kumta, Prashant N.
    Koratkar, Nikhil
    [J]. SMALL, 2009, 5 (20) : 2236 - 2242
  • [9] Elevated performances of SnS anodes with MWNTs as conductive agent for rechargeable lithium-ion batteries
    Zhu, Haiyan
    [J]. IONICS, 2011, 17 (07) : 641 - 645
  • [10] High Reversible Capacity Si/C Composite Anodes for Lithium-Ion Rechargeable Batteries
    Qi Peng
    Chen Yungui
    Zhu Ding
    Xu Chenghao
    Huang Lihong
    Duan Xiaobo
    [J]. RARE METAL MATERIALS AND ENGINEERING, 2014, 43 (05) : 1073 - 1078