Pattern Identification of Robotic Environments using Machine Learning Techniques

被引:2
|
作者
Gopalapillai, Radhakrishnan [1 ,2 ]
Gupta, Deepa [2 ,3 ]
Sudarshan, T. S. B. [1 ,2 ]
机构
[1] Amrita Sch Engn, Dept Comp Sci & Engn, Bengaluru 560035, India
[2] Amrita Univ, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
[3] Amrita Sch Engn, Dept Math, Bengaluru 560035, India
关键词
Machine Learning; Time series data; Feature selection; Classification; Object displacement; feature reduction;
D O I
10.1016/j.procs.2017.09.077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analysis of time series data collected from mobile robots is getting more attention in many application areas. When multiple robots move through an environment to perform certain actions, an understanding of the environment viewed by each robot is essential. This paper presents analysis of robotic data using machine learning techniques when the data consist of multiple views of the environment. Robotic environments have been classified using the data captured by onboard sensors of mobile robots using a set of machine learning algorithms and their performances have been compared The machine learning model is validated using a test environment where some of the objects are displaced or removed from their designated position. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 50 条
  • [1] Robotic Motion Control using Machine Learning Techniques
    Aparanji, V. M.
    Wali, Uday V.
    Aparna, R.
    2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 1241 - 1245
  • [2] Paraphrase Identification using Machine Learning Techniques
    Chitra, A.
    Kumar, C. S. Saravana
    RECENT ADVANCES IN NETWORKING, VLSI AND SIGNAL PROCESSING, 2010, : 245 - +
  • [3] Design Pattern Detection using Machine Learning Techniques
    Chaturvedi, Shivam
    Chaturvedi, Amrita
    Tiwari, Anurag
    Agarwal, Shalini
    2018 7TH INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (TRENDS AND FUTURE DIRECTIONS) (ICRITO) (ICRITO), 2018, : 246 - 251
  • [4] Acquisition and Analysis of Robotic Data Using Machine Learning Techniques
    Mishra, Shivendra
    Radhakrishnan, G.
    Gupta, Deepa
    Sudarshan, T. S. B.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 3, 2015, 33
  • [5] Modeling of a soft robotic neck using machine learning techniques
    Continelli, Nicole A.
    Nagua, Luis F.
    Monje, Concepcion A.
    Balaguer, Carlos
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2023, 20 (03): : 282 - 292
  • [6] Identification of footstrike pattern using accelerometry and machine learning
    Mahoney, Joseph M.
    Rhudy, Matthew B.
    Outerleys, Jereme
    Davis, Irene S.
    Altman-Singles, Allison R.
    JOURNAL OF BIOMECHANICS, 2024, 174
  • [7] Voice Disorder Identification by Using Machine Learning Techniques
    Verde, Laura
    De Pietro, Giuseppe
    Sannino, Giovanna
    IEEE ACCESS, 2018, 6 : 16246 - 16255
  • [8] Cybercrime: Identification and Prediction Using Machine Learning Techniques
    Veena, K.
    Meena, K.
    Kuppusamy, Ramya
    Teekaraman, Yuvaraja
    Angadi, Ravi V.
    Thelkar, Amruth Ramesh
    Computational Intelligence and Neuroscience, 2022, 2022
  • [9] Automatic Language Identification using Machine learning Techniques
    Venkatesan, Hariraj
    Venkatasubramanian, T. Varun
    Sangeetha, J.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES 2018), 2018, : 583 - 588
  • [10] Software defect identification using machine learning techniques
    Ceylan, Evren
    Kudubay, F. Onur
    Bener, Ayse B.
    32ND EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS (SEAA) - PROCEEDINGS, 2006, : 240 - +