Current status and future trends of SiGeBiCMOS technology

被引:114
|
作者
Harame, DL [1 ]
Ahlgren, DC
Coolbaugh, DD
Dunn, JS
Freeman, GG
Gillis, JD
Groves, RA
Hendersen, GN
Johnson, RA
Joseph, AJ
Subbanna, S
Victor, AM
Watson, KM
Webster, CS
Zampardi, PJ
机构
[1] IBM Corp, Essex Jct, VT 05452 USA
[2] IBM Corp, Fishkill, NY 12533 USA
[3] IBM Corp, Tewksbury, MA USA
[4] Inphi, Westlake Village, CA 91361 USA
[5] IBM Corp, Res Triangle Pk, NC 27709 USA
关键词
BiCMOS; HBT; SiGe;
D O I
10.1109/16.960385
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The silicon germanium (Site) heterojunction bipolar transistor (HBT) marketplace covers a wide range of products and product requirements, particularly when combined with CMOS in a BiCMOS technology. A new base integration approach is presented which decouples the structural and thermal features of the HBT from the CMOS. The trend is to use this approach for future SiGe technologies for easier migration to advanced CMOS technology generations. Lateral and vertical scaling are used to achieve smaller and faster SiGe HBT devices with greatly increased current densities. Improving both the f(T) and f(MAX) will be a significant challenge as the collector and base dopant concentrations are increased. The increasing current densities of the SiGe HBT will put more emphasis on interconnects as a key factor in limiting transistor layout. Capacitors and Inductors are two very important passives that must improve with each generation. The trend toward increasing capacitance in polysilicon-insulator-silicon (MOSCAP), polysilicon-insulator-polysilicon (Poly-Poly), and metal-insulator-metal (MIM) capacitors is discussed. The trend in VLSI interconnections toward thinner interlevel dielectrics and metallization layers is counter to the requirements of high Q inductors, potentially requiring a custom last metallization layer.
引用
收藏
页码:2575 / 2594
页数:20
相关论文
共 50 条
  • [1] Current status and future trends for disposable technology in the biopharmaceutical industry
    Allison, Nigel
    Richards, Jackie
    [J]. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2014, 89 (09) : 1283 - 1287
  • [2] CURRENT TECHNOLOGY AND FUTURE TRENDS
    SCANES, P
    [J]. ELECTRICAL REVIEW, 1973, 192 (11): : 386 - 388
  • [3] Ultralow-voltage RAM technology - Current status and future trends
    Itoh, K
    [J]. 2003 IEEE CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, 2003, : 3 - 8
  • [4] Review of the current status, technology and future trends of offshore wind farms
    Diaz, H.
    Guedes Soares, C.
    [J]. OCEAN ENGINEERING, 2020, 209
  • [5] MEMS Inertial Sensor Calibration Technology: Current Status and Future Trends
    Ru, Xu
    Gu, Nian
    Shang, Hang
    Zhang, Heng
    [J]. MICROMACHINES, 2022, 13 (06)
  • [6] The Development of Health Technology Assessment in Asia: Current Status and Future Trends
    Liu, Gordon
    Wu, Eric Q.
    Ahn, Jeonghoon
    Kamae, Isao
    Xie, Jipan
    Yang, Hongbo
    [J]. VALUE IN HEALTH REGIONAL ISSUES, 2020, 21 : 39 - 44
  • [7] Paracoccidioidomycosis: Current Status and Future Trends
    Hahn, Rosane Christine
    Hagen, Ferry
    Mendes, Rinaldo Poncio
    Burger, Eva
    Nery, Andreia Ferreira
    Siqueira, Nathan Pereira
    Guevara, Armando
    Rodrigues, Anderson Messias
    de Camargo, Zoilo Pires
    [J]. CLINICAL MICROBIOLOGY REVIEWS, 2022, 35 (04)
  • [8] Bioceramics - Current status and future trends
    Shackelford, JF
    [J]. BIOCERAMICS, 1999, 293 : 99 - 106
  • [9] SERMs: current status and future trends
    Morello, KC
    Wurz, GT
    DeGregorio, MW
    [J]. CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2002, 43 (01) : 63 - 76
  • [10] Current and future trends in photovoltaic technology
    Blieske, Ulf
    Mueller-Ost, Julia
    Meisenzahl, Kira
    Grommes, Eva-Maria
    Gecke, Rudolf
    Schneble, Niklas
    Clasing, Lionel
    Eisheuer, Marja
    Volk, Marvin
    [J]. 2019 INTERNATIONAL ENERGY AND SUSTAINABILITY CONFERENCE (IESC), 2019,