Polynomial representation for orthogonal projections onto subspaces of finite games

被引:0
|
作者
Zhang, Kuize [1 ,2 ]
机构
[1] Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R China
[2] Tech Univ Munich, Dept Elect & Comp Engn, D-80290 Munich, Germany
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
Decomposition of finite game; Potential game; Nonstrategic game; Harmonic game; Semitensor product; BOOLEAN CONTROL NETWORKS; STRATEGY FICTITIOUS PLAY; POTENTIAL GAMES; OBSERVABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The space of finite games can be decomposed into three orthogonal subspaces [2] which are the subspaces of pure potential games, nonstrategic games, and pure harmonic games. The orthogonal projections onto these subspaces are represented as the Moore-Penrose inverses of the corresponding linear operators (i.e., matrices) [2], but no closed forms for these orthogonal projections are given. In this paper, in the framework of the semitensor product of matrices, we give explicit polynomial representation (actually closed forms) for these orthogonal projections.
引用
收藏
页码:11267 / 11272
页数:6
相关论文
共 50 条
  • [1] An algorithm for computing explicit expressions for orthogonal projections onto finite-game subspaces
    Zhang, Kuize
    Johansson, Karl Henrik
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3196 - 3202
  • [3] METRIC PROJECTIONS ONTO SUBSPACES OF FINITE CODIMENSION
    MORRIS, PD
    DUKE MATHEMATICAL JOURNAL, 1968, 35 (04) : 799 - &
  • [4] NORM IN C OF ORTHOGONAL PROJECTIONS ONTO SUBSPACES OF POLYGONAL FUNCTIONS
    OSVALD, P
    MATHEMATICAL NOTES, 1977, 21 (3-4) : 276 - 280
  • [5] CapProNet: Deep Feature Learning via Orthogonal Projections onto Capsule Subspaces
    Zhang, Liheng
    Edraki, Marzieh
    Qi, Guo-Jun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [6] SUPERCLOSENESS OF ORTHOGONAL PROJECTIONS ONTO NEARBY FINITE ELEMENT SPACES
    Gawlik, Evan S.
    Lew, Adrian J.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 559 - 576
  • [7] Subspaces, angles and pairs of orthogonal projections
    Galantai, A.
    LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (03): : 227 - 260
  • [8] PROJECTIONS INTO SUBSPACES OF FINITE CODIMENSION
    CHENEY, EW
    PRICE, KH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (07): : 1080 - &
  • [9] Minimal Projections onto Subspaces with Codimension 2
    Sokolowski, Filip
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (08) : 1045 - 1059
  • [10] On Decomposed Subspaces of Finite Games
    Cheng, Daizhan
    Liu, Ting
    Zhang, Kuize
    Qi, Hongsheng
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (11) : 3651 - 3656