High-resolution Mapping of Forest Canopy Height by Integrating Sentinel and airborne LiDAR data

被引:1
|
作者
Zhang, Ya
Liu, Xianwei
Liu, Jing [1 ]
Li, Longhui
机构
[1] Nanjing Normal Univ, Minist Educ, Key Lab Virtual Geog Environm, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Canopy height; Random forest; Google Earth Engine; LiDAR; Sentinel;
D O I
10.1109/IGARSS46834.2022.9884385
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurate mapping of forest canopy height at national to global scales is essential to quantify carbon stock, understand forest ecosystem processes and enhance environment sustainable development. Airborne LiDAR technology has been utilized in many previous studies to generate unprecedented accurate forest canopy height estimation. However, the high cost of airborne LiDAR data limits its application at national and continental scales. How to use LiDAR data to generate high-resolution canopy height products over a large range remains a challenge. Hence, this study integrated airborne LiDAR data with freely available Sentinel-1 and Sentinel-2 data to map forest canopy height, by using random forest regression on the Google Earth Engine platform. Finally, this study completed national-scale forest canopy height mapping in the United States, at 25-m spatial resolution. Comparison with canopy height independent validation values demonstrates that the proposed model can predict reliable canopy height estimation (R-2=0.83, RMSE=5.05m, and nRMSE=0.33).
引用
收藏
页码:6037 / 6040
页数:4
相关论文
共 50 条
  • [1] Canopy Height Mapping by Sentinel 1 and 2 Satellite Images, Airborne LiDAR Data, and Machine Learning
    de Almeida, Catherine Torres
    Gerente, Jessica
    dos Prazeres Campos, Jamerson Rodrigo
    Gomes Junior, Francisco Caruso
    Providelo, Lucas Antonio
    Marchiori, Guilherme
    Chen, Xinjian
    [J]. REMOTE SENSING, 2022, 14 (16)
  • [2] High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data
    Li, Wang
    Niu, Zheng
    Shang, Rong
    Qin, Yuchu
    Wang, Li
    Chen, Hanyue
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 92
  • [3] Mapping Boreal Forest Species and Canopy Height using Airborne SAR and Lidar Data in Interior Alaska
    Zhao, Yuhuan
    Chen, Richard H.
    Bakian-Dogaheh, Kazem
    Whitcomb, Jane
    Yi, Yonghong
    Kimball, John S.
    Moghaddam, Mahta
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4955 - 4958
  • [4] Forest habitat mapping by means of high-resolution airborne data
    Holopainen, M
    [J]. 27TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, PROCEEDINGS: INFORMATION FOR SUSTAINABILITY, 1998, : 403 - 406
  • [5] Forest canopy height estimation based on ICESat/GLAS data by airborne lidar
    [J]. Liu, Qingwang (liuqw@caf.ac.cn), 1600, Chinese Society of Agricultural Engineering (33):
  • [6] High-Resolution Mapping of Forest Canopy Cover Using UAV and Sentinel-2
    Nijjar, Charanjeet Singh
    Singh, Sachchidanand
    Jaiswal, Tanisha
    Kalra, Shivani
    [J]. PROCEEDINGS OF UASG 2021: WINGS 4 SUSTAINABILITY, 2023, 304 : 331 - 341
  • [7] Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery
    Garcia, Mariano
    Saatchi, Sassan
    Ustin, Susan
    Balzter, Heiko
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 66 : 159 - 173
  • [8] Mapping forest canopy height globally with spaceborne lidar
    Simard, Marc
    Pinto, Naiara
    Fisher, Joshua B.
    Baccini, Alessandro
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2011, 116
  • [9] Retrieval of forest canopy height jointly using airborne LiDAR and ALOS PALSAR data
    Xu, Min
    Xiang, Haibing
    Yun, Hongquan
    Ni, Xiliang
    Chen, Wei
    Cao, Chunxiang
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 14 (02)
  • [10] MAPPING FOREST CANOPY HEIGHT USING TANDEM-X DSM AND AIRBORNE LIDAR DTM
    Sadeghi, Yaser
    St-Onge, Benoit
    Leblon, Brigitte
    Simard, Marc
    Papathanassiou, Kostas
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,