SELF-CALIBRATION OF COSMIC MICROWAVE BACKGROUND POLARIZATION EXPERIMENTS

被引:94
|
作者
Keating, Brian G. [1 ]
Shimon, Meir [2 ]
Yadav, Amit P. S. [1 ]
机构
[1] Univ Calif San Diego, Ctr Astrophys & Space Sci, Dept Phys, La Jolla, CA 92093 USA
[2] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
关键词
cosmic background radiation; instrumentation: polarimeters; GRAVITY-WAVES; TELESCOPE; SIGNATURE; PROBE;
D O I
10.1088/2041-8205/762/2/L23
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity "B-modes," have far-reaching implications for cosmology. To detect the B-modes generated during inflation, the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement, and may be inherently unstable over the (long) duration these searches require to detect the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency, and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of 10(15) GeV. Both man-made and astrophysical sources require dedicated observations which detract from the amount of integration time usable for detection of the inflationary B-modes. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished for any polarimeter without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Cosmic microwave background polarization experiments
    Zaldarriaga, M
    ASTROPHYSICAL JOURNAL, 1998, 503 (01): : 1 - 15
  • [2] Overview of Cosmic Microwave Background polarization experiments
    Timbie, PT
    Gundersen, JO
    Keating, BG
    AMIBA 2001: HIGH-Z CLUSTERS, MISSING BARYONS, AND CMB POLARIZATION, PROCEEDINGS, 2002, 257 : 235 - 242
  • [3] Polarization of the atmosphere as a foreground for cosmic microwave background polarization experiments
    Hanany, S
    Rosenkranz, P
    NEW ASTRONOMY REVIEWS, 2003, 47 (11-12) : 1159 - 1165
  • [4] Polarization of the cosmic microwave background
    Hedman, M
    AMERICAN SCIENTIST, 2005, 93 (03) : 236 - 243
  • [5] Polarization in the cosmic microwave background
    Bartlett, James G.
    BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (4A) : 1124 - 1129
  • [6] Cosmic microwave background polarization
    Bartlett, James G.
    TAUP 2005: PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, 2006, 39 : 1 - 8
  • [7] Polarization of the cosmic microwave background
    Ng, KW
    COSMIC MICROWAVE BACKGROUND AND LARGE SCALE STRUCTURE OF THE UNIVERSE, 1998, 151 : 22 - 27
  • [8] Cosmic microwave background experiments
    Smoot, GF
    PARTICLES AND THE UNIVERSE, 1998, : 127 - 182
  • [9] Lensing power spectrum of the cosmic microwave background with deep polarization experiments
    Legrand, Louis
    Carron, Julien
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [10] Observational strategies of cosmic microwave background temperature and polarization interferometry experiments
    Park, CG
    Ng, KW
    Park, C
    Liu, GC
    Umetsu, K
    ASTROPHYSICAL JOURNAL, 2003, 589 (01): : 67 - 81