Galois theory in symmetric monoidal categories

被引:5
|
作者
Janelidze, G
Street, R
机构
[1] Georgian Acad Sci, Math Inst, GE-380093 Tbilisi, Georgia
[2] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1006/jabr.1999.7905
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Galois theory presented here is at a level of generality essentially between that of G. Janelidze, D. Schumacher, and R. Street (1993, Appl. Categ. Structures 1, 103-110) and G. Janelidze (1991, Lecture Notes in Mathematics, Vol. 1488, pp. 157-173). However, our purpose is to concentrate on symmetric monoidal categories and so provide a new approach to Tannaka duality. (C) 1999 Academic Press.
引用
收藏
页码:174 / 187
页数:14
相关论文
共 50 条
  • [1] Quasi-Galois theory in symmetric monoidal categories
    Pauwels, Bregje
    ALGEBRA & NUMBER THEORY, 2017, 11 (08) : 1891 - 1920
  • [2] GALOIS THEORY IN MONOIDAL CATEGORIES
    LIGON, TS
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (01): : 1 - 3
  • [3] On the global homotopy theory of symmetric monoidal categories
    Lenz, Tobias
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 635 - 686
  • [4] A PRACTICAL TYPE THEORY FOR SYMMETRIC MONOIDAL CATEGORIES
    Shulman, Michael
    THEORY AND APPLICATIONS OF CATEGORIES, 2021, 37 : 863 - 907
  • [5] Presentably symmetric monoidal ∞-categories are represented by symmetric monoidal model categories
    Nikolaus, Thomas
    Sagave, Steffen
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (05): : 3189 - 3212
  • [6] Normed symmetric monoidal categories
    Rubin, Jonathan
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2025,
  • [7] Symmetric Monoidal Categories with Attributes
    Breiner, Spencer
    Nolan, John S.
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (333): : 33 - 48
  • [8] OPERADS FOR SYMMETRIC MONOIDAL CATEGORIES
    Elmendorf, A. D.
    THEORY AND APPLICATIONS OF CATEGORIES, 2023, 39 : 535 - 544
  • [9] Traces in symmetric monoidal categories
    Ponto, Kate
    Shulman, Michael
    EXPOSITIONES MATHEMATICAE, 2014, 32 (03) : 248 - 273
  • [10] ∞-OPERADS AS SYMMETRIC MONOIDAL ∞-CATEGORIES
    Haugseng, Rune
    Kock, Joachim
    PUBLICACIONS MATEMATIQUES, 2024, 68 (01) : 111 - 137